Journal Description
Electrochem
Electrochem
is an international, peer-reviewed, open access journal on electrochemistry published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.5 days after submission; acceptance to publication is undertaken in 7.3 days (median values for papers published in this journal in the second half of 2024).
- Journal Rank: CiteScore - Q2 (Materials Chemistry)
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Design and Fabrication of Micro-Electromechanical System (MEMS)-Based μ-DMFC (Direct Methanol Fuel Cells) for Portable Applications: An Outlook
Electrochem 2025, 6(2), 11; https://doi.org/10.3390/electrochem6020011 (registering DOI) - 30 Mar 2025
Abstract
►
Show Figures
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques
[...] Read more.
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques such as microfabrication, material selection for membranes and electrodes, and integration challenges in small-scale devices, in addition to issues like methanol crossover, low efficiency at high methanol concentrations, thermal management, and the cost of materials. The advancements in micro-DMFC stacks and prototype developments are presented, and the challenges relating to micro-DMFCs are also identified and reviewed in detail. The challenges in the development of micro-DMFC applications are also presented, including the need for a better understanding of the anode and cathode catalyst structure and for high catalyst loadings in oxidation-and-reduction reactions. Also, a comprehensive and highly valuable database for advancing innovations and enhancing the understanding of micro-DMFCs for potential applications is provided.
Full article
Open AccessArticle
Electrochemical Detection of Adrenaline Using Nafion–Trimethylsilyl and Nafion–Trimethylsilyl–Ru2+-Complex Modified Electrodes
by
R. Aguilar-Sánchez, D. A. Durán-Tlachino, S. L. Cabrera-Hilerio and J. L. Gárate-Morales
Electrochem 2025, 6(2), 10; https://doi.org/10.3390/electrochem6020010 - 27 Mar 2025
Abstract
►▼
Show Figures
The preparation and properties of Nafion–TMS (Nafion–trimethylsilyl) and Nafion–TMS–Ru2+-complex modified GC electrodes are reported for the electrochemical oxidation reaction of adrenaline (AD). The structure of Nafion–TMS was studied by atomic force microscopy. The incorporation of [Ru(bpy)3]2+ and [Ru(phen)
[...] Read more.
The preparation and properties of Nafion–TMS (Nafion–trimethylsilyl) and Nafion–TMS–Ru2+-complex modified GC electrodes are reported for the electrochemical oxidation reaction of adrenaline (AD). The structure of Nafion–TMS was studied by atomic force microscopy. The incorporation of [Ru(bpy)3]2+ and [Ru(phen)3]2+ complexes into Nafion–TMS was investigated by UV-vis spectroscopy, providing information about the interaction of the modified Nafion–TMS–Ru2+-complex composite. According to electrochemical studies, the electrodes modified with this composite polymer showed a faster electron transfer and greatly improved kinetics for the redox reaction of AD in standard solutions when compared to bare and Nafion–TMS modified electrodes. The oxidation current increased linearly with adrenaline concentration in the range from 1 to 20 mM and 1 to 100 mM for Nafion–TMS and the modified Nafion–TMS–Ru2+ complex, respectively. A strong pH dependence on the electroanalytical parameters was found for adrenaline detection, indicating that electron transfer reaction occurs in tandem with proton transfer.
Full article

Open AccessArticle
Influence of Coconut Husk Biochar and Inter-Electrode Distance on the No-Load Voltage of the Cymbopogan citratus Microbial Plant Fuel Cell in a Pot
by
Epiphane Zingbe, Damgou Mani Kongnine, Bienvenu M. Agbomahena, Pali Kpelou and Essowè Mouzou
Electrochem 2025, 6(1), 9; https://doi.org/10.3390/electrochem6010009 - 20 Mar 2025
Abstract
►▼
Show Figures
In a plant microbial fuel cell (P-MFC), the plant provides the fuel in the form of exudates secreted by the roots, which are oxidised by electroactive bacteria. The immature plant is hampered by low energy yields. Several factors may explain this situation, including
[...] Read more.
In a plant microbial fuel cell (P-MFC), the plant provides the fuel in the form of exudates secreted by the roots, which are oxidised by electroactive bacteria. The immature plant is hampered by low energy yields. Several factors may explain this situation, including the low open-circuit voltage of the plant cell. This is a function of the development of the biofilm formed by the electroactive bacteria on the surface of the anode, in relation to the availability of the exudates produced by the roots. In order to exploit the fertilising role of biochars, a plant cell was developed from C. citratus and grown in a medium to which 5% by mass of coconut shell biochar had been added. Its effect was studied as well as the distance between the electrodes. The potential of Cymbopogon citratus was also evaluated. Three samples without biochar, with inter-electrode distances of 2, 5 and 7 cm, respectively, identified as SCS2, SCS5 and SCS7, and three with the addition of 5 % biochar, with the same inter-electrode distance values, identified as S2, S5 and S7, were prepared. Open-circuit voltage (OCV) measurements were taken at 6 a.m., 1 p.m. and 8 p.m. The results showed that all the samples had high open-circuit voltage values at 1 p.m. Samples containing 5% biochar had open-circuit voltages increased by 16 %, 8.94% and 5.78%, respectively, for inter-electrode distances of 2, 5 and 7 cm compared with those containing no biochar. Furthermore, the highest open-circuit voltage values were obtained for all samples with C. citratus at an inter-electrode distance of 5 cm. The maximum power output of the PMFC with C. citratus in this study was 75.8 mW/m2, which is much higher than the power output of PMFCs in recent studies.
Full article

Figure 1
Open AccessArticle
Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries
by
Hiroto Tominaga, Junichi Tokomoto, Kenjiro Onimura and Kazuhiro Yamabuki
Electrochem 2025, 6(1), 8; https://doi.org/10.3390/electrochem6010008 - 18 Mar 2025
Abstract
►▼
Show Figures
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic
[...] Read more.
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic solvents, we successfully introduced sulfur-based compounds into porous carbon via vacuum impregnation using a solution, rather than conventional thermal impregnation. Charge–discharge measurements of lithium–sulfur (Li-S) secondary batteries assembled with this more uniform composite cathode, compared to those using elemental sulfur, demonstrated an increased discharge capacity in the initial cycles and at higher rates.
Full article

Graphical abstract
Open AccessArticle
Transition Metal Oxides (WO3-ZrO2) as Promoters and Hydrogen Adsorption Modulators in Pt/WO3-ZrO2-C Electrocatalyst for the Reduction of NOx
by
Claudia R. Santiago-Ramírez, Martha L. Hernández-Pichardo, Arturo Manzo-Robledo, Daniel A. Acuña-Leal and Miguel A. Gracia-Pinilla
Electrochem 2025, 6(1), 7; https://doi.org/10.3390/electrochem6010007 - 5 Mar 2025
Abstract
►▼
Show Figures
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3
[...] Read more.
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3-C (ZWC), synthesized via coprecipitation. Platinum nanoparticles (10 wt.%) were loaded onto ZWC and Vulcan carbon support, using similar methods for comparison. Comprehensive physicochemical and electrochemical analyses (N2 physisorption, XRD, XPS, SEM, TEM, and cyclic and linear voltammetry) revealed that PtZWC outperformed PtC and commercial PtEtek in NOx electrocatalysis. Notably, PtZWC exhibited the highest total electric charge for NOx reduction. At the same time, the hydrogen evolution reaction (HER) was shifted to more negative cathodic potentials, indicating reduced hydrogen coverage and a modified dissociative Tafel mechanism on platinum. Additionally, the combination of WO3 and ZrO2 in ZWC enhanced electron transfer and suppressed HER by reducing NO and hydrogen atom adsorption competition. While the incorporation of WO3 and ZrO2 lowered the surface area to 96 m2/g, it significantly improved pore properties, facilitating better Pt nanoparticle dispersion (3.06 ± 0.85 nm, as confirmed by SEM and TEM). XRD analysis identified graphite and Pt phases, with monoclinic WO3 broadening PtZWC peaks (20–25°). At the same time, XPS confirmed oxidation states of Pt, W, and Zr and tungsten-related oxygen vacancies, ensuring chemical stability and enhanced catalytic activity.
Full article

Figure 1
Open AccessReview
Recent Advancements in Na Super Ionic Conductor-Incorporated Composite Polymer Electrolytes for Sodium-Ion Battery Application
by
Kanya Koothanatham Senthilkumar, Rajagopalan Thiruvengadathan and Ramanujam Brahmadesam Thoopul Srinivasa Raghava
Electrochem 2025, 6(1), 6; https://doi.org/10.3390/electrochem6010006 - 3 Mar 2025
Abstract
►▼
Show Figures
Sodium-ion batteries (SIBs) have garnered significant attention as a cost-effective and sustainable alternative to lithium-ion batteries (LIBs) due to the abundance and eco-friendly extraction of sodium. Despite the larger ionic radius and heavier mass of sodium ions, SIBs are ideal for large-scale applications,
[...] Read more.
Sodium-ion batteries (SIBs) have garnered significant attention as a cost-effective and sustainable alternative to lithium-ion batteries (LIBs) due to the abundance and eco-friendly extraction of sodium. Despite the larger ionic radius and heavier mass of sodium ions, SIBs are ideal for large-scale applications, such as grid energy storage and electric vehicles, where cost and resource availability outweigh the constraints of size and weight. A critical component in SIBs is the electrolyte, which governs specific capacity, energy density, and battery lifespan by enabling ion transport between electrodes. Among various electrolytes, composite polymer electrolytes (CPEs) stand out for their non-leakage and non-flammable nature and tunable physicochemical properties. The incorporation of NASICON (Na Super Ionic CONductor) fillers into polymer matrices has shown transformative potential in enhancing SIB performance. NASICON fillers improve ionic conductivity by forming continuous ion conduction pathways and reduce polymer matrix crystallinity, thereby facilitating higher sodium-ion mobility. Additionally, these fillers enhance the mechanical properties and electrochemical performance of CPEs. Hence, this review focuses on the pivotal roles of NASICON fillers in optimizing the properties of CPEs, including ionic conductivity, structural integrity, and electrochemical stability. The mechanisms underlying sodium-ion transport facilitated by NASICON fillers in CPE will be explored, with emphasis on the influence of filler morphology and composition on electrochemical properties. By scrutinizing the recent findings, this review underscores the potential of NASICON-based composite polymer electrolytes as appropriate material for the development of advanced sodium-ion batteries.
Full article

Figure 1
Open AccessArticle
Tape Casting of NASICON-Based Separators with High Conductivity for Na All-Solid-State Batteries
by
Melanie Rosen, Samir Mahioui, Christian Schwab, Gerald Dück and Martin Finsterbusch
Electrochem 2025, 6(1), 5; https://doi.org/10.3390/electrochem6010005 - 16 Feb 2025
Cited by 1
Abstract
►▼
Show Figures
Sodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like
[...] Read more.
Sodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like oxide-ceramic-based all-solid-state batteries feature the highest possible safety while still maintaining competitive electrochemical performance. However, production technologies are still in their infancy, especially for Na all-solid-state batteries, and need to be urgently developed to enable solid-state-battery technology using only abundant raw materials. In this study, the additive-free production of freestanding, undoped NaSICON separators via tape-casting is demonstrated, having an extremely high total Na-ion conductivity of up to 2.44 mS·cm−1 at room temperature. Nevertheless, a strong influence of sample thickness on phase purity as well as electrochemical performance is uncovered. Additionally, the effect of self-coating of NaSICON during high-temperature treatment was evaluated as a function of thickness. While advantageous for increasing the stability against Na-metal anodes, detrimental consequences are identified when separator thickness is reduced to industrially relevant values and mitigation measures are postulated.
Full article

Graphical abstract
Open AccessArticle
Electrochemical Investigations of the Suitability of 1-Propyl-2,3-dimethylidazolium bis(trifluoromethylsulfonyl)imide as the Electrolyte for Application in Micro–Mesoporous Carbon-Electrode-Based Supercapacitors and Other Electrochemical Systems
by
Jaanus Kruusma and Enn Lust
Electrochem 2025, 6(1), 4; https://doi.org/10.3390/electrochem6010004 - 13 Feb 2025
Abstract
►▼
Show Figures
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance
[...] Read more.
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Surprisingly, despite the substitution of the slightly acidic hydrogen atom with a methyl group at the carbon atom located between two nitrogen atoms in the imidazolium cation, the EIS and CV measurements demonstrated that PMMIm(TFSI) began to decompose electrochemically at the same cell potential (ΔE) as 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm(BF4)), specifically at ΔE = 2.75 V. However, the CV and EIS data indicated that PMMIm(TFSI) decomposed with a significantly lower intensity than EMIm(BF4). Therefore, we believe that the use of PMMIm(TFSI) as the electrolyte will enable the construction of safer supercapacitors that can tolerate short periods of over-polarization up to ΔE = 4.0 V. However, when the ΔE ≤ 3.2 V was applied, EMIm(BF4) offered higher maximum power compared to PMMIm(TFSI). We found that the calculated maximum gravimetric power precisely describes the maximum ΔE applicable for a supercapacitor candidate.
Full article

Figure 1
Open AccessCommunication
Enhanced Hydrogen Evolution Reaction of a Zn+2-Stabilized Tungstate Electrocatalyst
by
Dasu Ram Paudel, Gopi Chandra Kaphle, Bhoj Raj Poudel, Mukunda KC, Manjinder Singh and Gunendra Prasad Ojha
Electrochem 2025, 6(1), 3; https://doi.org/10.3390/electrochem6010003 - 24 Jan 2025
Abstract
►▼
Show Figures
Due to their diverse properties and functionalities, cost-effective transition metal-based nanomaterials have been rigorously studied for electrochemical applications. Ultrathin nanosheets have been identified as the most effective electrodes for catalyzing water-splitting reactions in both acidic and alkaline environments. Here, we reported ZnWO4
[...] Read more.
Due to their diverse properties and functionalities, cost-effective transition metal-based nanomaterials have been rigorously studied for electrochemical applications. Ultrathin nanosheets have been identified as the most effective electrodes for catalyzing water-splitting reactions in both acidic and alkaline environments. Here, we reported ZnWO4, a member of the tungstate family, as an effective electrocatalyst for promoting the electrochemical hydrogen evolution reaction. The Zn+2-stabilized tungstate showed a remarkable cathodic reaction during the water-splitting reaction with low overpotential (136 mV at 10 mA cm−2) and small HER kinetics (Tafel Slope = 75.3 mV dec−1) and long-term cyclic durability. The high-valence tungsten stabilized with divalent Zn+2 promotes electron transfer during the reaction, making it an advanced electrocatalyst for green hydrogen production.
Full article

Figure 1
Open AccessArticle
Role of Electrochemical Precipitation Parameters in Developing Mixed-Phase Battery-Grade Nickel Hydroxide
by
Chinmaya Kumar Sarangi, G. Lilishree Achary, Tondepu Subbaiah, Raja Kishore Paramguru and Sanat Kumar Roy
Electrochem 2025, 6(1), 2; https://doi.org/10.3390/electrochem6010002 - 16 Jan 2025
Abstract
There is a high demand for nickel hydroxide as an engineering material used in the positive electrode of nickel metal hydride (Ni-MH) rechargeable batteries. These batteries are extensively used in various small instruments, disposable batteries, and electric vehicles. The structure of nickel hydroxide
[...] Read more.
There is a high demand for nickel hydroxide as an engineering material used in the positive electrode of nickel metal hydride (Ni-MH) rechargeable batteries. These batteries are extensively used in various small instruments, disposable batteries, and electric vehicles. The structure of nickel hydroxide significantly influences the discharge capacity and energy density, key properties of Ni-MH batteries, and this structure is primarily determined by the synthesis method used. In this study, nickel hydroxide was synthesized using an electrochemical precipitation method, with current density acting as a parameter to control the desired phase of the product, whether α-nickel hydroxide, β-nickel hydroxide, or a combination of both. At a current density of 50 A/m2, the synthesized nickel hydroxide demonstrated a smaller particle size and a superior discharge electrochemical property in comparison to that generated at 500 A/m2. The effect of agitation in catholyte was also investigated to examine the change in discharge property of the precipitated material. The product synthesized at 500 A/m2 from an agitated catholyte exhibited a tap density of 1.24 g/cc and an improved discharge capacity of 254 mAh per gram of Ni(OH)2.
Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Analysis of the Corrosion Behavior of Plain and Nanoporous Copper
by
Zhen Lei, Ksenya Mull and Nikolay Dimitrov
Electrochem 2025, 6(1), 1; https://doi.org/10.3390/electrochem6010001 - 13 Jan 2025
Abstract
►▼
Show Figures
This research investigates the corrosion behavior of copper (Cu) through a comprehensive analysis of both plain and nanoporous Cu thin films. A combination of weight-loss methods for quantitative analysis, along with polarization testing and scanning electron microscopy, is employed for both quantitative and
[...] Read more.
This research investigates the corrosion behavior of copper (Cu) through a comprehensive analysis of both plain and nanoporous Cu thin films. A combination of weight-loss methods for quantitative analysis, along with polarization testing and scanning electron microscopy, is employed for both quantitative and qualitative assessments of Cu corrosion dynamics. The corrosion mechanisms in chloride and nitrate solutions are compared, with an additional discussion on the influence of atmospheric oxygen (O2). The results demonstrate that chloride ions and the presence of O2 create the most severe corrosion conditions, while the concentration of salts has a relatively minor effect on the corrosion behavior. Notably, the comparative study reveals that nanoporous Cu exhibits a greater corrosion tendency, as indicated by more negative corrosion potentials. However, its corrosion rates are lower than those of plain Cu, as determined by corrosion current density measurements.
Full article

Figure 1
Open AccessArticle
Influence of Cigarette Butt Extract on the Suppression of Metal Corrosion
by
Verena Šućurović, Nives Vladislavić and Ivana Škugor Rončević
Electrochem 2024, 5(4), 585-598; https://doi.org/10.3390/electrochem5040038 - 21 Dec 2024
Abstract
►▼
Show Figures
Cigarette butts are an increasing environmental burden worldwide, and the quantities discarded each year could continue to rise. The chemical composition of cigarette butts, which comprises about 4000 different toxic chemicals, as well as their persistence in the environment and their potential negative
[...] Read more.
Cigarette butts are an increasing environmental burden worldwide, and the quantities discarded each year could continue to rise. The chemical composition of cigarette butts, which comprises about 4000 different toxic chemicals, as well as their persistence in the environment and their potential negative effects pose a major threat to the environment as they regularly enter aquatic habitats and endanger water supplies and aquatic species. One effective way to reduce pollution is to recycle cigarette butts. The aim of this study is to evaluate the possibility of using extracts from cigarette butts (filter extract and extract from tobacco residues) as corrosion inhibitors for the Cu10Ni alloy in a 3.5% NaCl solution with a pH of 8 at different temperatures (12 °C, 20 °C and 25 °C). The determination of the electrochemical parameters, i.e., the corrosion behavior of the Cu10Ni alloy in a 3.5% NaCl solution and pH of 8, with and without modification of the alloy surface by cigarette butt extracts was tested using electrochemical measurements (electrochemical impedance spectroscopy and linear and potentiodynamic polarization methods). The surface properties of the Cu10Ni alloy modified with cigarette butt extracts were evaluated by goniometry, SEM analysis and FTIR spectrophotometry. The modification of the surface of the Cu10Ni alloy with an extract of tobacco residue and a filter extract separated from cigarette butts, whose presence on the surface was confirmed by the surface analysis methods, increased the corrosion resistance of the alloy, indicating that these substances have an inhibitory effect. The better inhibition properties (at all temperatures: 12 °C, 20 °C and 25 °C) were exhibited by the filter extract, and the highest inhibition effect was exhibited by the filter extract at 12 °C.
Full article

Figure 1
Open AccessArticle
Electrochemical Characterization of Recast Nafion® Film-Modified Electrodes in Acetonitrile with Various Electrolytes
by
Anna F. Claire, Peter Zacher III, Danielle Lehto, Daysha Krahn and Krysti L. Knoche Gupta
Electrochem 2024, 5(4), 574-584; https://doi.org/10.3390/electrochem5040037 - 17 Dec 2024
Abstract
►▼
Show Figures
Nafion® is a cation exchange polymer that is commonly used in aqueous energy applications such as fuel cells due to its ability to exclude anions and neutral molecules and increase apparent diffusion of cationic redox molecules. However, this behavior is not well
[...] Read more.
Nafion® is a cation exchange polymer that is commonly used in aqueous energy applications such as fuel cells due to its ability to exclude anions and neutral molecules and increase apparent diffusion of cationic redox molecules. However, this behavior is not well studied in nonaqueous solutions. The behavior of platinum electrodes modified with recast Nafion® films in nonaqueous solutions was observed to be different from its well-studied behavior in aqueous solutions. The reversible redox couple tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate was studied in the nonaqueous, aprotic solvent acetonitrile with different electrolytes (tetrabutylammonium tetrafluoroborate, tetrabutylammonium trifluoromethanesulfonate, tetrabutylammonium hexafluorophosphate, and ammonium trifluoromethanesulfonate) using cyclic voltammetry and rotating disk voltammetry. An unmodified platinum electrode in the nonaqueous systems and a recast Nafion®-modified platinum electrode equilibrated in an aqueous solution of tris(bipyridine)ruthenium(II)chloride hexahydrate were used as controls. Results indicate that the polymer structure in acetonitrile conditions does not allow apparent (Dahms–Ruff) diffusion but does allow significant physical diffusion that would make Nafion a great immobilization option for modifying electrodes with catalysts in nonaqueous systems.
Full article

Figure 1
Open AccessArticle
Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries
by
Alhamdu Nuhu Bage, Olusola Bamisile, Humphrey Adun, Paul Takyi-Aninakwa, Destina Godwin Ekekeh and Qingsong Howard Tu
Electrochem 2024, 5(4), 560-573; https://doi.org/10.3390/electrochem5040036 - 5 Dec 2024
Cited by 1
Abstract
►▼
Show Figures
The innovative design of the microstructure of silicon-based composite anodes in Li-ion batteries holds great potential for overcoming inherent limitations, such as the significant volume change experienced by silicon particles. In this study, TiFeSi2/C composites prepared using micro, nano, and porous
[...] Read more.
The innovative design of the microstructure of silicon-based composite anodes in Li-ion batteries holds great potential for overcoming inherent limitations, such as the significant volume change experienced by silicon particles. In this study, TiFeSi2/C composites prepared using micro, nano, and porous silicon showed reversible capacities of 990.45 mAh.g−1, 1137.69 mAh.g−1, and 1045.43 mAh.g−1 at C/10. The results obtained from the electrochemical characterization show that the porous structure of the composite anode material created via acid etching reduced silicon expansion during the lithiation/delithiation processes. The void spaces formed in the inner structure of the porous silicon and the presence of carbon increased the electronic conductivity between the silicon particles and, on the other hand, lowered the overall diffusion distance of Li+. This study confirms that TiFeSi2/C prepared with porous silicon dispersed in a transition metal matrix delivers better electrochemical performance compared to micro and nano silicon with a retention of 80.16%.
Full article

Figure 1
Open AccessArticle
Full Tailored Metal Content NCM Regeneration from Spent Lithium-Ion Battery Mixture Under Mild Condition
by
Alpha Chi Him Tsang, Shaobo Ouyang, Yang Lv, Chi Chung Lee, Chi-Wing Tsang and Xiao-Ying Lu
Electrochem 2024, 5(4), 546-559; https://doi.org/10.3390/electrochem5040035 - 2 Dec 2024
Abstract
Mild conditioned, second-life ternary nickel–cobalt–manganese (NCM) black powder regeneration from spent lithium-ion batteries’ (LIBs) black powder mixture was demonstrated after mild conditioned p-toluenesulphuric acid (PTA)-assisted wet leaching. The NCM ratio was tailored to several combinations (333, 523, 532, and 622) by adding a
[...] Read more.
Mild conditioned, second-life ternary nickel–cobalt–manganese (NCM) black powder regeneration from spent lithium-ion batteries’ (LIBs) black powder mixture was demonstrated after mild conditioned p-toluenesulphuric acid (PTA)-assisted wet leaching. The NCM ratio was tailored to several combinations (333, 523, 532, and 622) by adding a suitable amount of metal (Ni, Co, Mn)-sulphate salt to the leachate. Regenerated NCM was obtained by co-precipitation with sodium hydroxide pellets and ammonia pH buffering solution, followed by lithium (Li) sintering under ambient air and size sieving. The obtained regenerated NCM powder was used for the energy storage materials (ESM) in coin cell (Li half-cell, CR2032) evaluation. Systematic characterization of regenerated NCM showed that the NCM ratio was close to the target value as assigned in the tailored process, and regenerated 622 (R622) exhibited strong activity in CR2032 coin cell testing among all four ratios with a maximum discharge capacity of 196.6 mAh/g.
Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Bacterial Consortium Biofilm-Based Electrochemical Biosensor for Measurement of Antioxidant Polyphenolic Compounds
by
Rani Melati Sukma, Dyah Iswantini, Novik Nurhidayat and Mohamad Rafi
Electrochem 2024, 5(4), 530-545; https://doi.org/10.3390/electrochem5040034 - 18 Nov 2024
Abstract
►▼
Show Figures
This work describes the development of an electrochemical biosensor method based on bacterial consortia to determine antioxidant capacity. The bacterial consortium used is a combination of bacteria from the genera Bacillus and Pseudomonas which can produce the enzymes tyrosinase and laccase. The consortium
[...] Read more.
This work describes the development of an electrochemical biosensor method based on bacterial consortia to determine antioxidant capacity. The bacterial consortium used is a combination of bacteria from the genera Bacillus and Pseudomonas which can produce the enzymes tyrosinase and laccase. The consortium bacteria were immobilized on the surface of the screen-printed carbon electrode (SPCE) to form a biofilm. Biofilms were selected based on the highest current response evaluated electrochemically using cyclic voltammetry analysis techniques. Optimum consortium biofilm conditions were obtained in a phosphate buffer solution of pH 7, and biofilm formation occurred on day 7. This work produces analytical performance with a coefficient of determination (R2) of 0.9924. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.5 µM and 10 µM, respectively. The biosensor showed a stable response until the 10th week. This biosensor was used to measure the antioxidant capacity of five extracts, and the results were confirmed using a standard method, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The highest antioxidant capacity is guava extract and the lowest is tempuyung extract. Thus, the development of this biosensor method can be used as an alternative for measuring antioxidant capacity.
Full article

Graphical abstract
Open AccessArticle
A Carbon-Particle-Supported Palladium-Based Cobalt Composite Electrocatalyst for Ethanol Oxidation Reaction (EOR)
by
Keqiang Ding, Weijia Li, Mengjiao Li, Ying Bai, Xiaoxuan Liang and Hui Wang
Electrochem 2024, 5(4), 506-529; https://doi.org/10.3390/electrochem5040033 - 15 Nov 2024
Cited by 1
Abstract
For the first time, carbon-particle-supported palladium-based cobalt composite electrocatalysts (abbreviated as PdxCoy/CPs) were prepared using a calcination–hydrothermal process–hydrothermal process (denoted as CHH). The catalysts of PdxCoy/CPs prepared using CoC2O4·2H2O,
[...] Read more.
For the first time, carbon-particle-supported palladium-based cobalt composite electrocatalysts (abbreviated as PdxCoy/CPs) were prepared using a calcination–hydrothermal process–hydrothermal process (denoted as CHH). The catalysts of PdxCoy/CPs prepared using CoC2O4·2H2O, (CH3COO)2Co·4H2O, and metallic cobalt were named catalyst c1, c2, and c3, respectively. For comparison, the catalyst prepared in the absence of a Co source (denoted as Pd/CP) was identified as catalyst c0. All fabricated catalysts were thoroughly characterized by XRD, EDS, XPS, and FTIR, indicating that PdO, metallic Pd, carbon particles, and a very small amount of cobalt oxide were the main components of all produced catalysts. As demonstrated by the traditional electrochemical techniques of CV and CA, the electrocatalytic performances of PdxCoy/CP towards the ethanol oxidation reaction (EOR) were significantly superior to that of Pd/CP. In particular, c1 showed an unexpected electrocatalytic activity for EOR; for instance, in the CV test, the peak f current density of EOR on catalyst c1 was 129.3 mA cm−2, being about 10.7 times larger than that measured on Pd/CP, and in the CA test, the polarized current density of EOR recorded for c1 after 7200 s was still about 2.1 mA cm−2, which was larger than that recorded for Pd/CP (0.6 mA cm−2). In the catalyst preparation process, except for the elements of C, O, Co, and Pd, no other elements were involved, which was thought to be the main contribution of this preliminary work, being very meaningful to the further exploration of Pd-based composite EOR catalysts.
Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
A Nitrogen- and Carbon-Present Tin Dioxide-Supported Palladium Composite Catalyst (Pd/N-C-SnO2)
by
Keqiang Ding, Weijia Li, Mengjiao Li, Mengyao Di, Ying Bai, Xiaoxuan Liang and Hui Wang
Electrochem 2024, 5(4), 482-505; https://doi.org/10.3390/electrochem5040032 - 13 Nov 2024
Abstract
►▼
Show Figures
For the first time, nitrogen- and carbon-present tin dioxide-supported palladium composite catalysts (denoted as Pd/N-C-SnO2) were prepared via an HCH method (HCH is the abbreviation for the hydrothermal process–calcination–hydrothermal process preparation process). In this work, firstly, three catalyst carriers (denoted as
[...] Read more.
For the first time, nitrogen- and carbon-present tin dioxide-supported palladium composite catalysts (denoted as Pd/N-C-SnO2) were prepared via an HCH method (HCH is the abbreviation for the hydrothermal process–calcination–hydrothermal process preparation process). In this work, firstly, three catalyst carriers (denoted as cc) were prepared using a hydrothermal-process-aided calcination method, and catalyst carriers prepared using ammonia monohydrate (NH3∙H2O), N,N-dimethylformamide (C3H7NO) and triethanolamine (C6H15NO3) as the nitrogen sources were nominated as cc1, cc2 and cc3, respectively. Secondly, these catalyst carriers were reacted with palladium oxide monohydrate (PdO·H2O) hydrothermally to generate catalysts c1, c2 and c3. As testified by XRD and XPS, besides carbon materials and the N-containing substances, the main substances of all prepared catalysts were SnO2 and metallic palladium (Pd). Above all things, all resultant catalysts, especially c2, showed a prominent electrocatalytic activity towards the ethanol oxidation reaction (EOR). As indicated by the CV (cyclic voltammetry) results, all fabricated catalysts presented a clear electrocatalytic activity towards the EOR. In the CA (chronoamperometry) measurement, the faradaic current density of EOR measured on c2 at −0.27 V vs. an SCE (saturated calomel electrode) after 7200 s was still maintained at about 5.6 mA cm−2. Preparing a novel catalyst carrier, N-C-SnO2, and preparing a new EOR catalyst, Pd/N-C-SnO2, were the principal dedications of this preliminary work, which was very beneficial to the development of Pd-based EOR catalysts.
Full article

Figure 1
Open AccessArticle
Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery
by
Ung-Il Kang
Electrochem 2024, 5(4), 470-481; https://doi.org/10.3390/electrochem5040031 - 8 Nov 2024
Abstract
►▼
Show Figures
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V
[...] Read more.
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V2O5, was mixed with various concentrations (0.8 M, 1.2 M, 1.6 M, 2.0 M) of citric acid (CA) as the reducing agent and stirred for 60 min at 90 °C using a hot plate to ensure complete dispersion in the solution. The resulting solution was subsequently subjected to a hydrothermal reduction reaction (HRR) furnace at 150 °C for 24 h to generate vanadium (3.5+). The mixed states of the produced vanadium (3+) and vanadium (4+) were confirmed using UV-vis spectroscopy. The electrochemical properties of the electrolyte were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), revealing that the optimal concentration of the CA was 1.6 M. The current efficiency, energy efficiency, and voltage efficiency of the electrolyte produced via the HRR process was compared with that prepared using VOSO4 in charge and discharge experiments. The results demonstrate that the HRR process yields an enhanced electrolyte across all efficiency metrics produced through the given improved performance in all efficiencies. These findings indicate that the HRR process using citric acid can facilitate the straightforward preparation of vanadium (3.5+) electrolyte, making it suitable for large-scale production.
Full article

Figure 1
Open AccessArticle
Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping
by
Pooja D. Walimbe, Rajeev Kumar, Amit Kumar Shringi, Obed Keelson, Hazel Achieng Ouma and Fei Yan
Electrochem 2024, 5(4), 455-469; https://doi.org/10.3390/electrochem5040030 - 24 Oct 2024
Cited by 1
Abstract
This study investigates the underlying mechanisms of hydrogen peroxide (H₂O₂) sensing using a composite material of bismuth oxide and bismuth oxyselenide (Bi2OxSey). The antagonistic effect of tungsten (W)-doping on the electrochemical behavior was also examined. Undoped, 2
[...] Read more.
This study investigates the underlying mechanisms of hydrogen peroxide (H₂O₂) sensing using a composite material of bismuth oxide and bismuth oxyselenide (Bi2OxSey). The antagonistic effect of tungsten (W)-doping on the electrochemical behavior was also examined. Undoped, 2 mol%, 4 mol%, and 6 mol% W-doped Bi2OxSey nanostructures were synthesized using a one-pot solution phase method involving selenium powder and hydrazine hydrate. W-doping induced a morphological transformation from nanosheets to spherical nanoparticles and amorphization of the bismuth oxyselenide phase. Electrochemical sensing measurements were conducted using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). H₂O₂ detection was achieved over a wide concentration range of 0.02 to 410 µM. In-depth CV analysis revealed the complex interplay of oxidation-reduction processes within the bismuth oxide and Bi2O2Se components of the composite material. W-doping exhibited an antagonistic effect, significantly reducing sensitivity. Among the studied samples, undoped Bi2OxSeγ demonstrated a high sensitivity of 83 μA μM⁻1 cm⁻2 for the CV oxidation peak at 0 V, while 6 mol% W-Bi2OxSey became completely insensitive to H2O2. Interestingly, DPV analysis showed a reversal of sensitivity trends with 2 and 4 mol% W-doping. The applicability of these samples for real-world analysis, including rainwater and urine, was also demonstrated.
Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Electrochem, IJMS, Molecules, Polymers, Separations
Advances in Chemistry and Chemical Engineering, 2nd Edition
Topic Editors: Cristina Orbeci, Cristian Pirvu, Ileana Rau, Stefania Stoleriu, Maria-Cristina Todasca, Elena Iuliana BîruDeadline: 31 July 2025
Topic in
Catalysts, Electrochem, Materials, Molecules, Nanomaterials, Electronic Materials
Electrocatalytic Advances for Sustainable Energy
Topic Editors: Yang Liu, Bangwei DengDeadline: 31 December 2026

Conferences
Special Issues
Special Issue in
Electrochem
Silicon Electrochemistry: Fundamentals and Modern Applications
Guest Editor: Andrey SuzdaltsevDeadline: 7 July 2025
Special Issue in
Electrochem
Feature Papers in Electrochemistry
Guest Editor: Masato SoneDeadline: 31 December 2025
Special Issue in
Electrochem
Fuel Cells: Performance and Durability
Guest Editors: Fatemeh Gholami, Martin TomasDeadline: 31 December 2025