Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack
Abstract
1. Introduction
2. Methodology
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, Y.; Fan, Y.; Chu, Y.; Ling, C.; Tan, X.; Yang, S. Experimental and Numerical Study on Thermal and Energy Management of a Fast-Charging Lithium-Ion Battery Pack with Air Cooling. J. Energy Eng. 2019, 145, 04019030. [Google Scholar] [CrossRef]
- Erb, D.C.; Kumar, S.; Carlson, E.; Ehrenberg, I.M.; Sarma, S.E. Analytical methods for determining the effects of lithium-ion cell size in aligned air-cooled battery packs. J. Energy Storage 2017, 10, 39–47. [Google Scholar] [CrossRef]
- Cheng, L.; Garg, A.; Jishnu, A.K.; Gao, L. Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles. J. Energy Storage 2020, 31, 101645. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F.; Zhou, H.; Liu, Y. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module. Int. J. Heat Mass Transf. 2020, 161, 120307. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Zhu, J.E.H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Seo, J.H.; Patil, M.S.; Kim, D.W.; Bang, Y.M.; Lee, M.Y. Numerical Study on the Cooling Performances of Various Cooling Methods for Laminated Type Battery. In Proceedings of the 1st ACTS—Asian Conference on Thermal Sciences, Jeju Island, Korea, 26–30 March 2017. [Google Scholar]
- Saw, L.H.; Ye, Y.; Tay, A.A.O.; Chong, W.T.; Kuan, S.H.; Yew, M.C. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl. Energy 2016, 177, 783–792. [Google Scholar] [CrossRef]
- Ling, Z.; Cao, J.; Zhang, W.; Zhang, Z.; Fang, X.; Gao, X. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Appl. Energy 2018, 228, 777–788. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lith-ium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Madani, S.S.; Schaltz, E.; Kær, S.K. Thermal Modelling of a Lithium Titanate Oxide Battery. ECS Trans. 2018, 87, 315–326. [Google Scholar] [CrossRef]
- Ye, Y.; Saw, L.H.; Shi, Y.; Tay, A.A.O. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 2015, 86, 281–291. [Google Scholar] [CrossRef]
- Pesaran, A.; Santhanagopalan, S.; Kim, G. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation); Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- Stroe, A.-I. Analysis of Performance and Degradation for Lithium Titanate Oxide Batteries Stroe. Ph.D. Thesis, Aalborg Universitet, Esbjerg, Denmark, 2018. [Google Scholar]
- Kim, G.-H.; Pesaran, A.A. Battery thermal management system design modeling. In Proceedings of the 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition (EVS-22), Yokohama, Japan, 23–28 October 2006. [Google Scholar]
39 A | 52 A | 65 A | |
---|---|---|---|
A1 | 1972 | 2922 | 4519 |
B1 | 1590 | 967.1 | 724.7 |
C1 | 468.2 | 398.5 | 286.7 |
A2 | 1239 | 1116 | 1882 |
B2 | 900.2 | 1603 | 1066 |
C2 | 382.9 | 841.8 | 443.2 |
A3 | 316.2 | 1252 | 1657 |
B3 | 2334 | 454.6 | 1613 |
C3 | 286.6 | 234.3 | 723.5 |
A4 | 995.6 | 1035 | 2806 |
B4 | 2707 | 2818 | 341.8 |
C4 | 1147 | 1640 | 211.6 |
A5 | 142.2 | −61.15 | 1218 |
B5 | 4275 | 3434 | 2509 |
C5 | 912.3 | 154.4 | 1152 |
A6 | −18.58 | −38.59 | −44.68 |
B6 | 5325 | 4207 | 3343 |
C6 | 60.5 | 142.3 | 229.3 |
A7 | 327.1 | 674.7 | 1060 |
B7 | 6688 | 4821 | 3762 |
C7 | 4856 | 4333 | 2117 |
A8 | 493.8 | 91.83 | 616.7 |
B8 | 4579 | 4907 | 5739 |
C8 | 1999 | 30.81 | 4784 |
Geometrical Parameters | The total thickness of the lithium titanate oxide battery cell | 9 mm |
The vertical distance between the lithium titanate oxide batteries | 4.5 mm | |
The horizontal distance between the lithium titanate oxide batteries and boundaries | 12 mm | |
Battery Physical Parameters | Along-plane thermal conductivity of the lithium titanate oxide battery | 38 W/m·k |
Specific heat capacity of the lithium titanate oxide battery | 1196.8 J/kg·k | |
Through-plane thermal conductivity of the lithium titanate oxide battery | 0.71 W/m·k | |
Density of the lithium titanate oxide battery | 1974.01 kg/m3 | |
Pack Parameters | The nominal voltage of the lithium titanate oxide battery | 2.26 V |
Number of lithium titanate oxide batteries in the pack | 20 | |
Lithium titanate oxide battery cell surface area | 26,316 mm2 | |
The capacity of each lithium titanate oxide battery | 13 Ah | |
Physical Parameters of the Coolant | Heat transfer coefficient for the cooling media | 25–250 W/m2k |
Density of the air | 1.225 kg/m3 | |
Specific heat capacity of the air | 1006 J/kg/k | |
Thermal conductivity of the air | 0.0242 W/m/k | |
Kinematic viscosity of the air | 1.46 × 10−5 m2/s | |
The density of the dielectric mineral oil | 924.1 kg/m3 | |
Specific heat capacity of the dielectric mineral oil | 1900 J/kg/k | |
Thermal conductivity of the dielectric mineral oil | 0.13 W/m/k | |
Kinematic viscosity of the dielectric mineral oil | 5.6 × 10−5 m2/s | |
Density of the dielectric water/glycol (50/50) | 1069 kg/m3 | |
Specific heat capacity of the dielectric water/glycol (50/50) | 3323 J/kg/k | |
Thermal conductivity of the dielectric water/glycol (50/50) | 0.3892 W/m/k | |
Kinematic viscosity of the dielectric water/glycol (50/50) | 2.58 × 10−6 m2/s | |
Environmental Parameters | Ambient temperature °C | 30 °C, 20 °C |
The inlet temperature of the cooling media | 30 °C, 20 °C | |
Inlet air velocity | 20 m/s | |
Inlet Water/glycol (50/50) velocity | 0.08 m/s | |
Inlet dielectric mineral oil velocity | 0.08 m/s |
Configuration | A | B | C | |
---|---|---|---|---|
Inlet | Outlet | - | ||
Inlet | Outlet | - | ||
Inlet | Outlet | - | ||
Inlet | Outlet | Outlet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madani, S.S.; Schaltz, E.; Kær, S.K. Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem 2021, 2, 50-63. https://doi.org/10.3390/electrochem2010005
Madani SS, Schaltz E, Kær SK. Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem. 2021; 2(1):50-63. https://doi.org/10.3390/electrochem2010005
Chicago/Turabian StyleMadani, Seyed Saeed, Erik Schaltz, and Søren Knudsen Kær. 2021. "Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack" Electrochem 2, no. 1: 50-63. https://doi.org/10.3390/electrochem2010005
APA StyleMadani, S. S., Schaltz, E., & Kær, S. K. (2021). Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem, 2(1), 50-63. https://doi.org/10.3390/electrochem2010005