Formation of Stable Cruciform Assembly of Gold Nanoparticles from Cannabis indica Leaves
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293. [Google Scholar] [CrossRef] [PubMed]
- Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.; Lewis, S.C.; et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA 2019, 116, 18590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Zhang, J.; Gao, J.; Zhang, Z.; Zhu, H.; Wang, D. Gold Nanoparticles in Cancer Theranostics. Front. Bioeng. Biotechnol. 2021, 9, 647905. [Google Scholar] [CrossRef]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019, 16, 1–23. [Google Scholar] [CrossRef]
- Svensson, M.; Sabharwal, H.; Håkansson, A.; Mossberg, A.-K.; Lipniunas, P.; Leffler, H.; Svanborg, C.; Linse, S. Molecular Characterization of α–Lactalbumin Folding Variants That Induce Apoptosis in Tumor Cells*. J. Biol. Chem. 1999, 274, 6388. [Google Scholar] [CrossRef] [Green Version]
- Shabbirahmed, A.M.; Kumaravel, M.; Somu, P.; Paul, S.; Khadria, A. Recent Advancements in Nanomaterials for Photodynamic Therapy of Cancers BT—Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Chakraborti, S., Ed.; Springer: Singapore, 2021; pp. 1–24. [Google Scholar]
- Yang, J.; Wang, T.; Zhao, L.; Rajasekhar, V.K.; Joshi, S.; Andreou, C.; Pal, S.; Hsu, H.; Zhang, H.; Cohen, I.J.; et al. Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nat. Biomed. Eng. 2020, 4, 686. [Google Scholar] [CrossRef]
- Wang, A.; Ng, H.P.; Xu, Y.; Li, Y.; Zheng, Y.; Yu, J.; Han, F.; Peng, F.; Fu, L. Gold nanoparticles: Synthesis, stability test, and application for the rice growth. J. Nanomater. 2014, 2014, 451232. [Google Scholar] [CrossRef]
- Ofir, Y.; Samanta, B.; Rotello, V.M. Polymer and biopolymer mediated self-assembly of gold nanoparticles †. Chem. Soc. Rev. 2008, 37, 1814. [Google Scholar] [CrossRef] [Green Version]
- Kamijima, T.; Ohmura, A.; Sato, T.; Akimoto, K.; Itabashi, M.; Mizuguchi, M.; Kamiya, M.; Kikukawa, T.; Aizawa, T.; Takahashi, M.; et al. Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death. Biochem. Biophys. Res. Commun. 2008, 376, 211. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Philip, D.; Unni, C. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 43, 1318. [Google Scholar] [CrossRef]
- Philip, D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 1417. [Google Scholar] [CrossRef]
- Royer, C.A. Probing Protein Folding and Conformational Transitions with Fluorescence. Chem. Rev. 2006, 106, 1769. [Google Scholar] [CrossRef] [PubMed]
- Royer, C.A.; Hinck, A.P.; Loh, S.N.; Prehoda, K.E.; Peng, X.; Jonas, J.; Markley, J.L. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry 1993, 32, 5222. [Google Scholar] [CrossRef]
- Khadria, A. Preparation of Gold Nanoparticles-α Lactalbumin Binary Complex for Breast Cancer Therapy. Bachelor’s Thesis, National Institute of Technology, Rourkela, India, 2012. [Google Scholar]
- Bian, K.; Schunk, H.; Ye, D.; Hwang, A.; Luk, T.S.; Li, R.; Wang, Z.; Fan, H. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling. Nat. Commun. 2018, 9, 2365. [Google Scholar]
- Wang, C.; Siu, C.; Zhang, J.; Fang, J. Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals. Nano Res. 2015, 8, 2445. [Google Scholar] [CrossRef]
- Feng, Q.; Shen, Y.; Fu, Y.; Muroski, M.E.; Zhang, P.; Wang, Q.; Xu, C.; Lesniak, M.S.; Li, G.; Cheng, Y. Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting. Theranostics 2017, 7, 1875. [Google Scholar] [CrossRef]
- Lystvet, S.M.; Volden, S.; Halskau, O.; Glomm, W.R. Immobilization onto gold nanoparticles alters α-lactalbumin interaction with pure and mixed phospholipid monolayers. Soft Matter 2011, 7, 11501. [Google Scholar] [CrossRef]
- Hu, F.; Xu, S.; Liu, B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Adv. Mater. 2018, 30, 1801350. [Google Scholar]
- Moan, J.; Peng, Q. An outline of the history of PDT. Anticancer Res. 2003, 23, 3591. [Google Scholar]
- Sudha, T.; Bharali, D.J.; Yalcin, M.; Darwish, N.H.E.; Coskun, M.D.; Keating, K.A.; Lin, H.-Y.; Davis, P.J.; Mousa, S.A. Targeted delivery of paclitaxel and doxorubicin to cancer xenografts via the nanoparticle of nano-diamino-tetrac. Int. J. Nanomed. 2017, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H.; Nafiujjaman, M.; Nurunnabi, M.; Li, L.; Khan, H.A.; Cho, K.J.; Huh, K.M.; Lee, Y. Hybrid photoactive nanomaterial composed of gold nanoparticles, pheophorbide-A and hyaluronic acid as a targeted bimodal phototherapy. Macromol. Res. 2015, 23, 474. [Google Scholar] [CrossRef]
- Khadria, A.; de Coene, Y.; Gawel, P.; Roche, C.; Clays, K.; Anderson, H.L. Push–pull pyropheophorbides for nonlinear optical imaging †. Org. Biomol. Chem. 2017, 15, 947. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.A.; Campagnola, P.J.; Wuskell, J.P.; Lewis, A.; Loew, L.M. Second Harmonic Generation Properties of Fluorescent Polymer-Encapsulated Gold Nanoparticles. J. Am. Chem. Soc. 2000, 122, 10234. [Google Scholar] [CrossRef]
- Khadria, A.; Fleischhauer, J.; Boczarow, I.; Wilkinson, J.D.; Kohl, M.M.; Anderson, H.L. Porphyrin Dyes for Nonlinear Optical Imaging of Live Cells. iScience 2018, 4, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.; Dou, Q.; Loh, X.J. Nanomaterial mediated optogenetics: Opportunities and challenges. RSC Adv. 2016, 6, 60896. [Google Scholar] [CrossRef] [Green Version]
- Khadria, A. Tools to measure membrane potential of neurons. Biomed. J. 2022; in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadria, A.; Paul, S. Formation of Stable Cruciform Assembly of Gold Nanoparticles from Cannabis indica Leaves. Appl. Nano 2022, 3, 143-148. https://doi.org/10.3390/applnano3030010
Khadria A, Paul S. Formation of Stable Cruciform Assembly of Gold Nanoparticles from Cannabis indica Leaves. Applied Nano. 2022; 3(3):143-148. https://doi.org/10.3390/applnano3030010
Chicago/Turabian StyleKhadria, Anjul, and Subhankar Paul. 2022. "Formation of Stable Cruciform Assembly of Gold Nanoparticles from Cannabis indica Leaves" Applied Nano 3, no. 3: 143-148. https://doi.org/10.3390/applnano3030010
APA StyleKhadria, A., & Paul, S. (2022). Formation of Stable Cruciform Assembly of Gold Nanoparticles from Cannabis indica Leaves. Applied Nano, 3(3), 143-148. https://doi.org/10.3390/applnano3030010