17-α Hydroxyprogesterone Caproate Immunology, a Special Focus on Preterm Labor, Preeclampsia, and COVID-19
Abstract
:1. Introduction
2. Immune Effects of 17-OHPC and its Implication in Preterm Labor and Preeclampsia
3. The Possible Implications of 17-OHPC Immune Effects in Pregnant Women with COVID-19
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Roman, A.S. 17-α hydroxyprogesterone caproate for the prevention of preterm birth. Womens Health 2012, 8, 21–30. [Google Scholar] [CrossRef] [PubMed]
- FDA. CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart (accessed on 30 January 2021).
- Blackwell, S.C.; Gyamfi-Bannerman, C.; Biggio, J.R., Jr.; Chauhan, S.P.; Hughes, B.L.; Louis, J.M.; Manuck, T.A.; Miller, H.S.; Das, A.F.; Saade, G.R.; et al. 17-OHPC to Prevent Recurrent Preterm Birth in Singleton Gestations (PROLONG Study): A Multicenter, International, Randomized Double-Blind Trial. Am. J. Perinatol. 2020, 37, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Meis, P.J.; Klebanoff, M.; Thom, E.; Dombrowski, M.P.; Sibai, B.; Moawad, A.H.; Spong, C.Y.; Hauth, J.C.; Miodovnik, M.; Varner, M.W.; et al. Prevention of Recurrent Preterm Delivery by 17 Alpha-Hydroxyprogesterone Caproate. N. Engl. J. Med. 2003, 348, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Saade, G.R.; Das, A.F. Re-examining the Meis Trial for Evidence of False-Positive Results. Obstet. Gynecol. 2020, 136, 622–627. [Google Scholar] [CrossRef]
- Sibai, B.; Saade, G.R.; Das, A.F.; Gudeman, J. Safety review of hydroxyprogesterone caproate in women with a history of spontaneous preterm birth. J. Perinatol. 2020, 41, 718–725. [Google Scholar] [CrossRef]
- Nelson, D.B.; McIntire, D.D.; McDonald, J.; Gard, J.; Turrichi, P.; Leveno, K.J. 17-alpha Hydroxyprogesterone caproate did not reduce the rate of recurrent preterm birth in a prospective cohort study. Am J Obstet Gynecol. 2017, 216, 600.e1–600.e9. [Google Scholar] [CrossRef]
- Weatherborn, M.; Mesiano, S. Rationale for current and future progestin-based therapies to prevent preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 52, 114–125. [Google Scholar] [CrossRef]
- Society for Maternal-Fetal Medicine (SMFM) Publications Committee. SMFM Statement: Use of 17-alpha hydroxyprogesterone caproate for prevention of recurrent preterm birth. Am. J. Obstet. Gynecol. 2020, 223, B16–B18. [Google Scholar] [CrossRef]
- Gleicher, N. Does the immune system induce labor? Lessons from preterm deliveries in women with autoimmune diseases. Clin. Rev. Allergy Immunol. 2010, 39, 194–206. [Google Scholar] [CrossRef]
- Parry, S.; Strauss, J.F., 3rd. Premature rupture of the fetal membranes. N. Engl. J. Med. 1998, 338, 663–670. [Google Scholar] [CrossRef]
- Kumar, D.; Moore, R.M.; Mercer, B.M.; Mansour, J.M.; Mesiano, S.; Schatz, F.; Lockwood, C.J.; Moore, J.J. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening. Am. J. Obstet. Gynecol. 2017, 217, 695.e1–695.e14. [Google Scholar] [CrossRef] [PubMed]
- Al-Lami, R.A. Immune effects of 17α-hydroxyprogesterone caproate. Am. J. Obstet. Gynecol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Li, A.; Goodwin, T.M.; Brower, M.; Blitz, M.; Minoo, P.; Felix, J.C.; Lee, R.H. Effect of 17-alpha hydroxyprogesterone caproate on the production of tumor necrosis factor-alpha and the expression of cyclooxygenase-2 in lipopolysaccharide-treated gravid human myometrial explants. J. Perinatol. 2010, 30, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Simhan, H.N.; Chiao, J.P.; Mattison, D.R.; Caritis, S.N. Human decidual cell Toll-like receptor signaling in response to endotoxin: The effect of progestins. Am. J. Obstet. Gynecol. 2008, 198, e1–e4. [Google Scholar] [CrossRef]
- Furcron, A.E.; Romero, R.; Plazyo, O.; Unkel, R.; Xu, Y.; Hassan, S.S.; Chaemsaithong, P.; Mahajan, A.; Gomez-Lopez, N. Vaginal progesterone, but not 17α-hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal-fetal interface. Am. J. Obstet. Gynecol. 2015, 213, 846.e1–846.e19. [Google Scholar] [CrossRef]
- Yoneda, S.; Yoneda, N.; Shiozaki, A.; Yoshino, O.; Ueno, T.; Niimi, H.; Kitajima, I.; Tamura, K.; Kawasaki, Y.; Makimoto, M.; et al. 17OHP-C in patients with spontaneous preterm labor and intact membranes: Is there an effect according to the presence of intra-amniotic inflammation? Am. J. Reprod. Immunol. 2018, 80, e12867. [Google Scholar] [CrossRef]
- Caritis, S.N.; Hankins, G.; Hebert, M.; Haas, D.M.; Ahmed, M.; Simhan, H.; Haneline, L.A.; Harris, J.; Chang, J.; Famy, A.S.; et al. Impact of Pregnancy History and 17-Hydroxyprogesterone Caproate on Cervical Cytokines and Matrix Metalloproteinases. Am. J. Perinatol. 2018, 35, 470–480. [Google Scholar] [CrossRef]
- Ashford, K.; Chavan, N.R.; Wiggins, A.T.; Sayre, M.M.; McCubbin, A.; Critchfield, A.S.; O’Brien, J. Comparison of Serum and Cervical Cytokine Levels throughout Pregnancy between Preterm and Term Births. AJP Rep. 2018, 8, e113–e120. [Google Scholar] [CrossRef]
- Kiefer, D.G.; Peltier, M.R.; Keeler, S.M.; Rust, O.; Ananth, C.V.; Vintzileos, A.M.; Hanna, N. Efficacy of midtrimester short cervix interventions is conditional on intraamniotic inflammation. Am. J. Obstet. Gynecol. 2016, 214, e1–e276. [Google Scholar] [CrossRef]
- Facchinetti, F.; Dante, G.; Venturini, P.; Paganelli, S.; Volpe, A. 17alpha-hydroxy-progesterone effects on cervical proinflammatory agents in women at risk for preterm delivery. Am. J. Perinatol. 2008, 25, 503–506. [Google Scholar] [CrossRef]
- Garry, D.J.; Baker, D.A.; Persad, M.D.; Peresleni, T.; Kocis, C.; Demishev, M. Progesterone effects on vaginal cytokines in women with a history of preterm birth. PLoS ONE 2018, 13, e0209346. [Google Scholar] [CrossRef] [PubMed]
- Foglia, L.M.; Ippolito, D.L.; Stallings, J.D.; Zelig, C.M.; Napolitano, P.G. Intramuscular 17α-hydroxyprogesterone caproate administration attenuates immunoresponsiveness of maternal peripheral blood mononuclear cells. Am. J. Obstet. Gynecol. 2010, 203, e1–e561. [Google Scholar] [CrossRef] [PubMed]
- Miguel, C.A.; Raggio, M.C.; Villar, M.J.; Gonzalez, S.L.; Coronel, M.F. Anti-allodynic and anti-inflammatory effects of 17α-hydroxyprogesterone caproate in oxaliplatin-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 2019, 24, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Elovitz, M.A.; Mrinalini, C. The use of progestational agents for preterm birth: Lessons from a mouse model. Am. J. Obstet. Gynecol. 2006, 195, 1004–1010. [Google Scholar] [CrossRef]
- Novak, C.M.; Ozen, M.; McLane, M.; Alqutub, S.; Lee, J.Y.; Lei, J.; Burd, I. Progesterone improves perinatal neuromotor outcomes in a mouse model of intrauterine inflammation via immunomodulation of the placenta. Am. J. Reprod. Immunol. 2018, 79, e12842. [Google Scholar] [CrossRef]
- Gutzeit, O.; Segal, L.; Korin, B.; Iluz, R.; Khatib, N.; Dabbah-Assadi, F.; Ginsberg, Y.; Fainaru, O.; Ross, M.G.; Weiner, Z.; et al. Progesterone Attenuates Brain Inflammatory Response and Inflammation-Induced Increase in Immature Myeloid Cells in a Mouse Model. Inflammation 2021, 44, 956–964. [Google Scholar] [CrossRef]
- Sibai, B.M.; Caritis, S.N.; Hauth, J.C.; MacPherson, C.; VanDorsten, J.P.; Klebanoff, M.; Landon, M.; Paul, R.H.; Meis, P.J.; Miodovnik, M.; et al. Preterm delivery in women with pregestational diabetes mellitus or chronic hypertension relative to women with uncomplicated pregnancies. The National institute of Child health and Human Development Maternal- Fetal Medicine Units Network. Am. J. Obstet. Gynecol. 2000, 183, 1520–1524. [Google Scholar] [CrossRef]
- Köck, K.; Köck, F.; Klein, K.; Bancher-Todesca, D.; Helmer, H. Diabetes mellitus and the risk of preterm birth with regard to the risk of spontaneous preterm birth. J. Matern. Fetal Neonatal Med. 2010, 23, 1004–1008. [Google Scholar] [CrossRef]
- Liu, B.; Xu, G.; Sun, Y.; Du, Y.; Gao, R.; Snetselaar, L.G.; Santillan, M.K.; Bao, W. Association between maternal pre-pregnancy obesity and preterm birth according to maternal age and race or ethnicity: A population-based study. Lancet Diabetes Endocrinol. 2019, 7, 707–714. [Google Scholar] [CrossRef]
- Michalczyk, M.; Celewicz, A.; Celewicz, M.; Woźniakowska-Gondek, P.; Rzepka, R. The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediat. Inflamm. 2020, 2020, 3864941. [Google Scholar] [CrossRef]
- Raghupathy, R. Cytokines as key players in the pathophysiology of preeclampsia. Med. Princ. Pract. 2013, 22, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Taylor, R.N. Review: Immunobiology of preeclampsia. Am. J. Reprod. Immunol. 1997, 37, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Conrad, K.P.; Benyo, D.F. Placental cytokines and the pathogenesis of preeclampsia. Am. J. Reprod. Immunol. 1997, 37, 240–249. [Google Scholar] [CrossRef]
- Keiser, S.D.; Veillon, E.W.; Parrish, M.R.; Bennett, W.; Cockrell, K.; Fournier, L.; Granger, J.P.; Martin, J.N., Jr.; Lamarca, B. Effects of 17-hydroxyprogesterone on tumor necrosis factor-alpha-induced hypertension during pregnancy. Am. J. Hypertens. 2009, 22, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.M.; Cornelius, D.C.; Harmon, A.; Moseley, J.; Martin, J.N., Jr.; LaMarca, B. 17-hydroxyprogesterone caproate significantly improves clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model. Hypertension 2015, 65, 225–231. [Google Scholar] [CrossRef]
- Amaral, L.M.; Faulkner, J.L.; Elfarra, J.; Cornelius, D.C.; Cunningham, M.W.; Ibrahim, T.; Vaka, V.R.; McKenzie, J.; LaMarca, B. Continued Investigation into 17-OHPC: Results from the Preclinical RUPP Rat Model of Preeclampsia. Hypertension 2017, 70, 1250–1255. [Google Scholar] [CrossRef]
- Veillon, E.W., Jr.; Keiser, S.D.; Parrish, M.R.; Bennett, W.; Cockrell, K.; Ray, L.F.; Granger, J.P.; Martin, J.N., Jr.; LaMarca, B. 17-Hydroxyprogesterone blunts the hypertensive response associated with reductions in uterine perfusion pressure in pregnant rats. Am. J. Obstet. Gynecol. 2009, 201, 324.e1–6. [Google Scholar] [CrossRef]
- Amaral, L.M.; Kiprono, L.; Cornelius, D.C.; Shoemaker, C.; Wallace, K.; Moseley, J.; Wallukat, G.; Martin, J.N.; Dechend, R.; LaMarca, B. Progesterone supplementation attenuates hypertension and the autoantibody to the angiotensin II type I receptor in response to elevated interleukin-6 during pregnancy. Am. J. Obstet. Gynecol. 2014, 211, 158.e1–6. [Google Scholar] [CrossRef]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.; Ross, R.; Frydas, I.; Kritas, S. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents 2020, 34, 327–331. [Google Scholar] [CrossRef]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Sentilhes, L.; De Marcillac, F.; Jouffrieau, C.; Kuhn, P.; Thuet, V.; Hansmann, Y.; Ruch, Y.; Fafi-Kremer, S.; Deruelle, P. Coronavirus disease 2019 in pregnancy was associated with maternal morbidity and preterm birth. Am. J. Obstet. Gynecol. 2020, 223, 914.e1–914.e15. [Google Scholar] [CrossRef]
- Di Mascio, D.; Khalil, A.; Saccone, G.; Rizzo, G.; Buca, D.; Liberati, M.; Vecchiet, J.; Nappi, L.; Scambia, G.; Berghella, V.; et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2020, 2, 100107. [Google Scholar] [CrossRef] [PubMed]
- Al-Lami, R.A.; Alrammahi, A.M.; Algburi, A.M. Coronavirus disease 2019 in pregnancy was associated with maternal morbidity and preterm birth. Am. J. Obstet. Gynecol. 2021, 224, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Garcia-Ruiz, I.; Maiz, N.; Rodo, C.; Garcia-Manau, P.; Serrano, B.; Lopez-Martinez, R.M.; Balcells, J.; Fernandez-Hidalgo, N.; Carreras, E.; et al. Pre-eclampsia-like syndrome induced by severe COVID-19: A prospective observational study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1374–1380. [Google Scholar] [CrossRef]
- Madden, N.; Emeruwa, U.N.; Polin, M.; Bejerano, S.; Gyamfi-Bannerman, C.; Booker, W.A. SARS-CoV-2 and hypertensive disease in pregnancy. Am. J. Obstet. Gynecol. MFM 2021, 4, 496. [Google Scholar] [CrossRef]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; Vale, M.S.D.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality among Pregnant Women with and without COVID-19 Infection. JAMA Pediatr. 2021, 175, 817. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Deruelle, P.; Gunier, R.B.; Rauch, S.; García-May, P.K.; Mhatre, M.; Usman, M.A.; Abd-Elsalam, S.; Etuk, S.; Simmons, L.E.; et al. Preeclampsia and COVID-19: Results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 2021, 225, 289.e1–289.e17. [Google Scholar] [CrossRef]
- Lai, J.; Romero, R.; Tarca, A.L.; Iliodromiti, S.; Rehal, A.; Banerjee, A.; Yu, C.; Peeva, G.; Palaniappan, V.; Tan, L.; et al. SARS-CoV-2 and the subsequent development of preeclampsia and preterm birth: Evidence of a dose-response relationship supporting causality. Am. J. Obstet. Gynecol. 2021, 225, 689–693.e1. [Google Scholar] [CrossRef]
- Metz, T.D.; Clifton, R.G.; Hughes, B.L.; Sandoval, G.; Saade, G.R.; Grobman, W.A.; Manuck, T.A.; Miodovnik, M.; Sowles, A.; Clark, K.; et al. Disease Severity and Perinatal Outcomes of Pregnant Patients with Coronavirus Disease 2019 (COVID-19). Obstet. Gynecol. 2021, 137, 571–580. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Romero, R. SARS-CoV-2 infection during pregnancy and risk of preeclampsia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2021, 226, 68–89.e3. [Google Scholar] [CrossRef] [PubMed]
- Beys-Da-Silva, W.O.; da Rosa, R.L.; Santi, L.; Tureta, E.F.; Terraciano, P.B.; Guimarães, J.A.; Passos, E.P.; Berger, M. The risk of COVID-19 for pregnant women: Evidences of molecular alterations associated with preeclampsia in SARS-CoV-2 infection. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1867, 165999. [Google Scholar] [CrossRef] [PubMed]
- Coronado-Arroyo, J.C.; Concepción-Zavaleta, M.J.; Zavaleta-Gutiérrez, F.E.; Concepción-Urteaga, L.A. Is COVID-19 a risk factor for severe preeclampsia? Hospital experience in a developing country. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 256, 502–503. [Google Scholar] [CrossRef]
- Rolnik, D.L. Can COVID-19 in pregnancy cause pre-eclampsia? BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1381. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. Can. Med. Assoc. J. 2021, 193, E540–E548. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Lami, R.A. 17-α Hydroxyprogesterone Caproate Immunology, a Special Focus on Preterm Labor, Preeclampsia, and COVID-19. Reprod. Med. 2022, 3, 246-252. https://doi.org/10.3390/reprodmed3030019
Al-Lami RA. 17-α Hydroxyprogesterone Caproate Immunology, a Special Focus on Preterm Labor, Preeclampsia, and COVID-19. Reproductive Medicine. 2022; 3(3):246-252. https://doi.org/10.3390/reprodmed3030019
Chicago/Turabian StyleAl-Lami, Rasha A. 2022. "17-α Hydroxyprogesterone Caproate Immunology, a Special Focus on Preterm Labor, Preeclampsia, and COVID-19" Reproductive Medicine 3, no. 3: 246-252. https://doi.org/10.3390/reprodmed3030019
APA StyleAl-Lami, R. A. (2022). 17-α Hydroxyprogesterone Caproate Immunology, a Special Focus on Preterm Labor, Preeclampsia, and COVID-19. Reproductive Medicine, 3(3), 246-252. https://doi.org/10.3390/reprodmed3030019