Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation
Abstract
:1. Introduction
2. Development of Sensitization
3. Techniques to Identify Sensitization Level and to Stratify the Risk
- (a)
- If the patient has no DSA and no cellular memory, the transplant is possible with a low risk for AMR;
- (b)
- If at the time of transplantation, there is an absence of DSAs but there is a potential cellular memory against the donor HLA, the transplant is possible with an increased risk for AMR. The cellular memory is possible if there are historical DSAs and/or pregnancy or a previous transplant with repeat antigens. Other possibilities are transfusions with no information on blood donors.
- (c)
- If at the time of transplantation, there are DSAs, but with negative flow, the transplant is possible with a risk for acute AMR and acceptable medium-term graft survival.
- (d)
- If at the time of transplantation, there are DSAs with positive flow and negative CDC, the transplant is possible, but there is a very high risk for acute AMR and accelerated chronic AMR.
- (e)
- If at the time of transplantation, there are DSAs with positive CDC, the transplant is not possible and there is the need of desensitization before proceeding with the transplant.
4. Incidence of Hyperimmune Patients and Graft Survival with Desensitization
5. Timing of Desensitization
6. Desensitization Strategies and Drugs
7. Drugs Acting on B Cells
8. Drugs Acting on Plasma Cells
9. Drugs Acting on Antibodies
10. Drugs Acting on Complement
11. Conclusions
12. Future Directions
Funding
Institutional Review Board Statement
Informed consent Statement
Data availability Statement
Conflicts of Interest
References
- Salvadori, M. Strategies for access to kidney transplantation for highly sensitized and incompatible patients. Transplantology 2023, 4, 85–89. [Google Scholar] [CrossRef]
- Luque, S.; Lúcia, M.; Bestard, O. Refinement of humoral immune monitoring in kidney transplantation: The role of “hidden” alloreactive memory B cells. Transpl. Int. 2017, 30, 955–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torija, A.; Favà, A.; Meneghini, M.; Crespo, E.; Bestard, O. Novel insights into the pathobiology of humoral alloimmune memory in kidney transplantation. Curr. Opin. Organ. Transplant. 2020, 25, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.S. New insights into the development of B cell responses: Implications for solid organ transplantation. Hum. Immunol. 2019, 80, 378–384. [Google Scholar] [CrossRef]
- Cano-Romero, F.L.; Laguna Goya, R.; Utrero-Rico, A.; Gómez-Massa, E.; Arroyo-Sánchez, D.; Suárez-Fernández, P.; Lora, D.; Andrés, A.; Castro-Panete, M.J.; Paz-Artal, E. Longitudinal profile of circulating T follicular helper lymphocytes parallels anti-HLA sensitization in renal transplant recipients. Am. J. Transplant. 2019, 19, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Radbruch, A.; Muehlinghaus, G.; Luger, E.O.; Inamine, A.; Smith, K.G.; Dörner, T.; Hiepe, F. Competence and competition: The challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 2006, 6, 741–750. [Google Scholar] [CrossRef]
- Manz, R.A.; Thiel, A.; Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 1997, 388, 133–134. [Google Scholar] [CrossRef]
- Muehlinghaus, G.; Cigliano, L.; Huehn, S.; Peddinghaus, A.; Leyendeckers, H.; Hauser, A.E.; Hiepe, F.; Radbruch, A.; Arce, S.; Manz, R.A. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 2005, 105, 3965–3971. [Google Scholar] [CrossRef] [Green Version]
- Baggiolini, M. Chemokines and leukocyte traffic. Nature 1998, 392, 565–568. [Google Scholar] [CrossRef]
- Bestard, O.; Couzi, L.; Crespo, M.; Kessaris, N.; Thaunat, O. Stratifying the humoral risk of candidates to a solid organ transplantation: A proposal of the ENGAGE working group. Transpl. Int. 2021, 34, 1005–1018. [Google Scholar] [CrossRef]
- Patel, R.; Terasaki, P.I. Significance of the positive crossmatch test in kidney transplantation. N. Engl. J. Med. 1969, 280, 735–739. [Google Scholar] [CrossRef]
- Bray, R.A.; Tarsitani, C.; Gebel, H.M.; Lee, J.H. Clinical cytometry and progress in HLA antibody detection. Methods Cell. Biol. 2011, 103, 285–310. [Google Scholar]
- Schlaf, G.; Pollok-Kopp, B.; Manzke, T.; Schurat, O.; Altermann, W. Novel solid phase-based ELISA assays contribute to an improved detection of anti-HLA antibodies and to an increased reliability of pre- and post-transplant crossmatching. NDT Plus 2010, 3, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Tait, B.D. Detection of HLA Antibodies in Organ Transplant Recipients—Triumphs and Challenges of the Solid Phase Bead Assay. Front. Immunol. 2016, 7, 570. [Google Scholar] [CrossRef] [Green Version]
- Zachary, A.A.; Kopchaliiska, D.; Montgomery, R.A.; Leffell, M.S. HLA-specific B cells: I. A method for their detection, quantification, and isolation using HLA tetramers. Transplantation 2007, 83, 982–988. [Google Scholar] [CrossRef]
- Lúcia, M.; Luque, S.; Crespo, E.; Melilli, E.; Cruzado, J.M.; Martorell, J.; Jarque, M.; Gil-Vernet, S.; Manonelles, A.; Grinyó, J.M.; et al. Preformed circulating HLA-specific memory B cells predict high risk of humoral rejection in kidney transplantation. Kidney Int. 2015, 88, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Karahan, G.E.; Krop, J.; Wehmeier, C.; de Vaal, Y.J.H.; Langerak-Langerak, J.; Roelen, D.L.; Lardy, N.M.; Bemelman, F.J.; Ten Berge, I.J.M.; Reinders, M.E.J.; et al. An Easy and Sensitive Method to Profile the Antibody Specificities of HLA-specific Memory B Cells. Transplantation 2019, 103, 716–723. [Google Scholar] [CrossRef]
- Dahdal, S.; Saison, C.; Valette, M.; Bachy, E.; Pallet, N.; Lina, B.; Koenig, A.; Monneret, G.; Defrance, T.; Morelon, E.; et al. Residual Activatability of Circulating Tfh17 Predicts Humoral Response to Thymodependent Antigens in Patients on Therapeutic Immunosuppression. Front. Immunol. 2019, 9, 3178. [Google Scholar] [CrossRef] [Green Version]
- Gobierno de España, Ministerio de Sanidad Organizatión National de Transplantes Informe 2020. Available online: https://www.sanidad.gob.es (accessed on 15 May 2023).
- Montgomery, R.A.; Lonze, B.E.; King, K.E.; Kraus, E.S.; Kucirka, L.M.; Locke, J.E.; Warren, D.S.; Simpkins, C.E.; Dagher, N.N.; Singer, A.L.; et al. Desensitization in HLA-incompatible kidney recipients and survival. N. Engl. J. Med. 2011, 365, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Orandi, B.J.; Garonzik-Wang, J.M.; Massie, A.B.; Zachary, A.A.; Montgomery, J.R.; Van Arendonk, K.J.; Stegall, M.D.; Jordan, S.C.; Oberholzer, J.; Dunn, T.B.; et al. Quantifying the risk of incompatible kidney transplantation: A multicenter study. Am. J. Transplant. 2014, 14, 1573–1580. [Google Scholar] [CrossRef]
- Manook, M.; Koeser, L.; Ahmed, Z.; Robb, M.; Johnson, R.; Shaw, O.; Kessaris, N.; Dorling, A.; Mamode, N. Post-listing survival for highly sensitised patients on the UK kidney transplant waiting list: A matched cohort analysis. Lancet 2017, 389, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, E.; Eskandary, F.; Kozakowski, N.; Bond, G.; Kikić, Ž.; Yoo, D.; Rasoul-Rockenschaub, S.; Oberbauer, R.; Böhmig, G.A. Deceased donor kidney transplantation across donor-specific antibody barriers: Predictors of antibody-mediated rejection. Nephrol. Dial. Transplant. 2016, 31, 1342–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrouche, L.; Aubert, O.; Suberbielle, C.; Rabant, M.; Van Huyen, J.D.; Martinez, F.; Sberro-Soussan, R.; Scemla, A.; Tinel, C.; Snanoudj, R.; et al. Long-term Outcomes of Kidney Transplantation in Patients with High Levels of Preformed DSA: The Necker High-Risk Transplant Program. Transplantation 2017, 101, 2440–2448. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Regele, H.; Schillinger, M.; Kletzmayr, J.; Haidbauer, B.; Derfler, K.; Druml, W.; Böhmig, G.A. Peritransplant immunoadsorption: A strategy enabling transplantation in highly sensitized crossmatch-positive cadaveric kidney allograft recipients. Transplantation 2005, 79, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Morath, C.; Beimler, J.; Opelz, G.; Scherer, S.; Schmidt, J.; Macher-Goeppinger, S.; Klein, K.; Sommerer, C.; Schwenger, V.; Zeier, M.; et al. Living donor kidney transplantation in crossmatch-positive patients enabled by peritransplant immunoadsorption and anti-CD20 therapy. Transpl. Int. 2012, 25, 506–517. [Google Scholar] [CrossRef]
- Fehr, T.; Gaspert, A. Antibody-mediated kidney allograft rejection: Therapeutic options and their experimental rationale. Transpl. Int. 2012, 25, 623–632. [Google Scholar] [CrossRef]
- Jordan, S.C.; Ammerman, N.; Choi, J.; Huang, E.; Peng, A.; Sethi, S.; Najjar, R.; Toyoda, M.; Lim, K.; Louie, S.; et al. Novel Therapeutic Approaches to Allosensitization and Antibody-mediated Rejection. Transplantation 2019, 103, 262–272. [Google Scholar] [CrossRef]
- Vo, A.A.; Lukovsky, M.; Toyoda, M.; Wang, J.; Reinsmoen, N.L.; Lai, C.-H.; Peng, A.; Villicana, R.; Jordan, S.C. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N. Engl. J. Med. 2008, 359, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Ramos, E.; Pollinger, H.; Stegall, M.D.; Gloor, J.; Dogan, A.; Grande, J. The Effect of Desensitization Protocols on Human Splenic B-Cell Populations In Vivo. Am. J. Transplant. 2007, 7, 402–407. [Google Scholar] [CrossRef]
- Dhilleswara, R.V. Belimumab: Therapeutic mechanism and current status of clinical trials. Biomed. Res. 2018, 29, 3034–3039. [Google Scholar]
- Treml, J.F.; Hao, Y.; Stadanlick, J.E.; Cancro, M.P. The BLyS family: Toward a molecular understanding of B cell homeostasis. Cell Biochem. Biophys. 2009, 53, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mackay, F.; Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.K.; Handu, S.S.; Dubey, S.; Sharma, P.; Sharma, K.K.; Ahmed, Q.M. Belimumab: First targeted biological treatment for systemic lupus erythematosus. J. Pharmacol. Pharmacother. 2011, 2, 317–319. [Google Scholar] [CrossRef] [Green Version]
- NCT01025193 Clinical trial.gov Naji A University of Pennsylvania Desensitization with Belimumab in Sensitized Patients Awaiting Kidney Transplant. Available online: https://www.clinicaltrials.gov (accessed on 19 May 2023).
- NCT01536379 Clinical trial.gov GSK Investigational Site Cambridge UK A Study of Belimumab in the Prevention of Kidney Transplant Rejection. Available online: https://www.clinicaltrials.gov (accessed on 19 May 2023).
- Banham, G.D.; Flint, S.M.; Torpey, N.; Lyons, P.; Shanahan, D.N.; Gibson, A.; Watson, C.; O’Sullivan, A.-M.; Chadwick, J.A.; Foster, K.E.; et al. Belimumab in kidney transplantation: An experimental medicine, randomised, placebo-controlled phase 2 trial. Lancet 2018, 391, 2619–2630. [Google Scholar] [CrossRef] [Green Version]
- Ravetch, J.V.; Bolland, S. IgG Fc receptors. Ann. Rev. Immunol 2001, 19, 275–290. [Google Scholar] [CrossRef]
- Pearse, R.N. SHIP recruitment attenuates FcγIIB-induced apoptosis. Immunity 1999, 10, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Mackay, M.; Stanevsky, A.; Wang, T.; Aranow, C.; Li, M.; Koenig, S.J.; Ravetch, J.V.; Diamond, B. Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J. Exp. Med. 2006, 203, 2157–2164. [Google Scholar] [CrossRef]
- Xiang, Z.; Cutler, A.J.; Brownlie, R.J.; Fairfax, K.; Lawlor, K.E.; Severinson, E.; Walker, E.U.; Manz, R.A.; Tarlinton, D.M.; Smith, K.G. FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol. 2007, 8, 419–429. [Google Scholar] [CrossRef]
- Sheng, L.; Cao, X.; Chi, S.; Wu, J.; Xing, H.; Liu, H.; Yang, Z. Overexpression of FcγRIIB regulates downstream protein phosphorylation and suppresses B cell activation to ameliorate systemic lupus erythematosus. Int. J. Mol. Med. 2020, 46, 1409–1422. [Google Scholar] [CrossRef]
- Diwan, T.S.; Raghavaiah, S.; Burns, J.M.; Kremers, W.K.; Gloor, J.M.; Stegall, M.D. The impact of proteasome inhibition on alloantibody-producing plasma cells in vivo. Transplantation 2011, 9, 536–541. [Google Scholar] [CrossRef]
- Perry, D.K.; Burns, J.M.; Pollinger, H.S.; Amiot, B.P.; Gloor, J.M.; Gores, G.J.; Stegall, M.D. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am. J. Transplant. 2009, 9, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, N.S.; Shields, A.R.; Alloway, R.R.; Sadaka, B.; Girnita, A.L.; Mogilishetty, G.; Cardi, M.; Woodle, E.S. Randomized controlled pilot study of B cell-targeted induction therapy in HLA sensitized kidney transplant recipients. Am. J. Transplant. 2013, 13, 3142–3154. [Google Scholar] [CrossRef] [PubMed]
- Eskandary, F.; Regele, H.; Baumann, L.; Bond, G.; Kozakowski, N.; Wahrmann, M.; Hidalgo, L.G.; Haslacher, H.; Kaltenecker, C.C.; Aretin, M.B.; et al. A Randomized Trial of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2018, 29, 591–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, S.; Laubach, J.P.; Hideshima, T.; Chauhan, D.; Anderson, K.C.; Richardson, P.G. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017, 36, 561–584. [Google Scholar] [CrossRef] [PubMed]
- NCT 02442648 Clinical Trial.gov. Woodle ES B-Cell Targeted Desensitization with Carfilzomib for Preformed Anti-HLA Antibodies in Patients Awaiting Kidney Transplantation. Available online: https://www.clinicaltrials.gov (accessed on 22 May 2023).
- Tremblay, S.; Driscoll, J.J.; Rike-Shields, A.; Hildeman, D.A.; Alloway, R.R.; Girnita, A.L.; Brailey, P.A.; Woodle, E.S. A prospective, iterative, adaptive trial of carfilzomib-based desensitization. Am. J. Transplant. 2020, 20, 411–421. [Google Scholar] [CrossRef]
- Vo, A.A.; Choi, J.; Kim, I.; Louie, S.; Cisneros, K.; Kahwaji, J.; Toyoda, M.; Ge, S.; Haas, M.; Puliyanda, D.; et al. A Phase I/II Trial of the Interleukin-6 Receptor-Specific Humanized Monoclonal (Tocilizumab) + Intravenous Immunoglobulin in Difficult to Desensitize Patients. Transplantation 2015, 99, 2356–2363. [Google Scholar] [CrossRef]
- Doberer, K.; Duerr, M.; Halloran, P.F.; Eskandary, F.; Budde, K.; Regele, H.; Reeve, J.; Borski, A.; Kozakowski, N.; Reindl-Schwaighofer, R.; et al. A Randomized Clinical Trial of Anti-IL-6 Antibody Clazakizumab in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2021, 32, 708–722. [Google Scholar] [CrossRef]
- Mease, P.J.; Gottlieb, A.B.; Berman, A.; Drescher, E.; Xing, J.; Wong, R.; Banerjee, S. The Efficacy and Safety of Clazakizumab, an Anti-Interleukin-6 Monoclonal Antibody, in a Phase IIb Study of Adults with Active Psoriatic Arthritis. Arthritis Rheumatol. 2016, 68, 2163–2173. [Google Scholar] [CrossRef]
- Kaufman, G.P.; Schrier, S.L.; Lafayette, R.A.; Arai, S.; Witteles, R.M.; Liedtke, M. Daratumumab yields rapid and deep hematologic responses in patients with heavily pretreated AL amyloidosis. Blood 2017, 130, 900–902. [Google Scholar] [CrossRef] [Green Version]
- Mateos, M.V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. ALCYONE Trial Investigators. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef]
- Kwun, J.; Matignon, M.; Manook, M.; Guendouz, S.; Audard, V.; Kheav, D.; Poullot, E.; Gautreau, C.; Ezekian, B.; Bodez, D.; et al. Daratumumab in Sensitized Kidney Transplantation: Potentials and Limitations of Experimental and Clinical Use. J. Am. Soc. Nephrol. 2019, 30, 1206–1219. [Google Scholar] [CrossRef]
- Joher, N.; Matignon, M.; Grimbert, P. HLA Desensitization in Solid Organ Transplantation: Anti-CD38 to Across the Immunological Barriers. Front. Immunol. 2021, 12, 688301. [Google Scholar] [CrossRef]
- Doberer, K.; Kläger, J.; Gualdoni, G.A.; Mayer, K.A.; Eskandary, F.; Farkash, E.A.; Agis, H.; Reiter, T.; Reindl-Schwaighofer, R.; Wahrmann, M.; et al. CD38 Antibody Daratumumab for the Treatment of Chronic Active Antibody-mediated Kidney Allograft Rejection. Transplantation 2021, 105, 451–457. [Google Scholar] [CrossRef]
- Spica, D.; Junker, T.; Dickenmann, M.; Schaub, S.; Steiger, J.; Rüfli, T.; Halter, J.; Hopfer, H.; Holbro, A.; Hirt-Minkowski, P. Daratumumab for Treatment of Antibody-Mediated Rejection after ABO-Incompatible Kidney Transplantation. Case Rep. Nephrol. Dial. 2019, 9, 149–157. [Google Scholar] [CrossRef]
- Aguilera Agudo, C.; Gómez Bueno, M.; Krsnik Castello, I. Daratumumab for Antibody-mediated Rejection in Heart Transplant-A Novel Therapy: Successful Treatment of Antibody-mediated Rejection. Transplantation 2021, 105, e30–e31. [Google Scholar] [CrossRef]
- Alishetti, S.; Farr, M.; Jennings, D.; Serban, G.; Uriel, N.; Sayer, G.; Vasilescu, R.; Restaino, S.; Chong, A.S.; Habal, M.V. Desensitizing highly sensitized heart transplant candidates with the combination of belatacept and proteasome inhibition. Am. J. Transplant. 2020, 20, 3620–3630. [Google Scholar] [CrossRef]
- Jain, D.; Rajab, A.; Young, J.S.; Yin, D.; Nadasdy, T.; Chong, A.S.; Pelletier, R.P. Reversing donor-specific antibody responses and antibody-mediated rejection with bortezomib and belatacept in mice and kidney transplant recipients. Am. J. Transplant. 2020, 20, 2675–2685. [Google Scholar] [CrossRef]
- NCT 04827979 Clinical trial. Gov. Shreya Mall. Univerity of California San Francisco, CA Daratumumab and Belatacept for Desensitization. Available online: https://www.clinicaltrials.gov (accessed on 19 May 2023).
- Glotz, D.; Antoine, C.; Julia, P.; Suberbielle-Boissel, C.; Boudjeltia, S.; Fraoui, R.; Hacen, C.; Duboust, A.; Bariety, J. Desensitization and subsequent kidney transplantation of patients using intravenous immunoglobulins (IVIg). Am. J. Transplant. 2002, 2, 758–760. [Google Scholar] [CrossRef]
- Jordan, S.C.; Tyan, D.; Stablein, D.; McIntosh, M.; Rose, S.; Vo, A.; Toyoda, M.; Davis, C.; Shapiro, R.; Adey, D.; et al. Evaluation of intravenous immunoglobulin as an agent to lower allosensitization and improve transplantation in highly sensitized adult patients with end-stage renal disease: Report of the NIH IG02 trial. J. Am. Soc. Nephrol. 2004, 15, 3256–3562. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, R.A.; Zachary, A.A.; Racusen, L.C.; Leffell, M.S.; King, K.E.; Burdick, J.; Maley, W.R.; Ratner, L.E. Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients. Transplantation 2000, 70, 887–895. [Google Scholar] [CrossRef]
- Mamode, N.; Bestard, O.; Claas, F.; Furian, L.; Griffin, S.; Legendre, C.; Pengel, L.; Naesens, M. European Guideline for the Management of Kidney Transplant Patients with HLA Antibodies: By the European Society for Organ Transplantation Working Group. Transpl. Int. 2022, 35, 10511. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Dong, P.; Wang, J.; Yu, X.; Yu, B. Efficacy of Combined Desensitization Therapy Based on Protein A Immunoadsorption on Anti-human Leukocyte Antigen Antibodies in Sensitized Kidney Transplant Recipients: A Retrospective Study. Cureus 2022, 14, e28661. [Google Scholar] [CrossRef] [PubMed]
- Kälble, F.; Süsal, C.; Pego da Silva, L.; Speer, C.; Benning, L.; Nusshag, C.; Pham, L.; Tran, H.; Schaier, M.; Sommerer, C.; et al. Living Donor Kidney Transplantation in Patients with Donor-Specific HLA Antibodies After Desensitization with Immunoadsorption. Front. Med. 2021, 8, 781491. [Google Scholar] [CrossRef] [PubMed]
- Junker, T.; Volken, T.; Stehle, G.; Drexler, B.; Infanti, L.; Buser, A.; Passweg, J.; Schaub, S.; Dickenmann, M.; Halter, J.; et al. Safety and Feasibility of Immunoadsorption with Heparin Anticoagulation in Preparation of ABO-Incompatible Kidney Transplantation: A Retrospective Single-Center Study. Transfus. Med. Hemother. 2023, 50, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Vonpawelrammingen, U.; Björck, L. IdeS and SpeB: Immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 2003, 6, 50–55. [Google Scholar] [CrossRef]
- Järnum, S.; Bockermann, R.; Runström, A.; Winstedt, L.; Kjellman, C. The Bacterial Enzyme IdeS Cleaves the IgG-Type of B Cell Receptor (BCR), Abolishes BCR-Mediated Cell Signaling, and Inhibits Memory B Cell Activation. J. Immunol. 2015, 195, 5592–5601. [Google Scholar] [CrossRef] [Green Version]
- Jordan, S.C.; Lorant, T.; Choi, J.; Kjellman, C.; Winstedt, L.; Bengtsson, M.; Zhang, X.; Eich, T.; Toyoda, M.; Eriksson, B.M.; et al. IgG Endopeptidase in Highly Sensitized Patients Undergoing Transplantation. N. Engl. J. Med. 2017, 377, 442–453. [Google Scholar] [CrossRef]
- Vo, A.A.; Choi, J.; Cisneros, K.; Reinsmoen, N.; Haas, M.; Ge, S.; Toyoda, M.; Kahwaji, J.; Peng, A.; Villicana, R.; et al. Benefits of rituximab combined with intravenous immunoglobulin for desensitization in kidney transplant recipients. Transplantation 2014, 98, 312–319. [Google Scholar] [CrossRef]
- Zachary, A.A.; Lucas, D.P.; Montgomery, R.A.; Leffell, M.S. Rituximab prevents an anamnestic response in patients with cryptic sensitization to HLA. Transplantation 2013, 95, 701–704. [Google Scholar] [CrossRef]
- Lorant, T.; Bengtsson, M.; Eich, T.; Eriksson, B.M.; Winstedt, L.; Järnum, S.; Stenberg, Y.; Robertson, A.K.; Mosén, K.; Björck, L.; et al. Safety, immunogenicity, pharmacokinetics, and efficacy of degradation of anti-HLA antibodies by IdeS (imlifidase) in chronic kidney disease patients. Am. J. Transplant. 2018, 18, 2752–2762. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Chu, M.; Choi, J.; Louie, S.; Vo, A.; Jordan, S.C.; Toyoda, M. Imlifidase Inhibits HLA Antibody-mediated NK Cell Activation and Antibody-dependent Cell-mediated Cytotoxicity (ADCC) In Vitro. Transplantation 2020, 104, 1574–1579. [Google Scholar] [CrossRef]
- Stegall, M.D.; Diwan, T.; Raghavaiah, S.; Cornell, L.D.; Burns, J.; Dean, P.G.; Cosio, F.G.; Gandhi, M.J.; Kremers, W.; Gloor, J.M. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 2011, 11, 2405–2413. [Google Scholar] [CrossRef]
- Cornell, L.D.; Schinstock, C.A.; Gandhi, M.J.; Kremers, W.K.; Stegall, M.D. Positive crossmatch kidney transplant recipients treated with eculizumab: Outcomes beyond 1 year. Am. J. Transplant. 2015, 15, 1293–1302. [Google Scholar] [CrossRef]
- Marks, W.H.; Mamode, N.; Montgomery, R.A.; Stegall, M.D.; Ratner, L.E.; Cornell, L.D.; Rowshani, A.T.; Colvin, R.B.; Dain, B.; Boice, J.A.; et al. Safety and efficacy of eculizumab in the prevention of antibody-mediated rejection in living-donor kidney transplant recipients requiring desensitization therapy: A randomized trial. Am. J. Transplant. 2019, 19, 2876–2888. [Google Scholar] [CrossRef] [Green Version]
- Morgan, B.P.; Harris, C.L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug. Discov. 2015, 14, 857–877. [Google Scholar] [CrossRef]
- Sharp, J.A.; Whitley, P.H.; Cunnion, K.M.; Krishna, N.K. Peptide inhibitor of complement c1, a novel suppressor of classical pathway activation: Mechanistic studies and clinical potential. Front. Immunol. 2014, 5, 406. [Google Scholar] [CrossRef]
- Gadek, J.E.; Hosea, S.W.; Gelfand, J.A.; Santaella, M.; Wickerhauser, M.; Triantaphyllopoulos, D.C.; Frank, M.M. Replacement therapy in hereditary angioedema: Successful treatment of acute episodes of angioedema with partly purified C1 inhibitor. N. Engl. J. Med. 1980, 302, 542–546. [Google Scholar] [CrossRef]
- Zanichelli, A.; Mansi, M.; Periti, G.; Cicardi, M. Therapeutic management of hereditary angioedema due to C1 inhibitor deficiency. Expert Rev. Clin. Immunol. 2013, 9, 477–488. [Google Scholar] [CrossRef]
- Vo, A.A.; Zeevi, A.; Choi, J.; Cisneros, K.; Toyoda, M.; Kahwaji, J.; Peng, A.; Villicana, R.; Puliyanda, D.; Reinsmoen, N.; et al. A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients. Transplantation 2015, 99, 299–308. [Google Scholar] [CrossRef]
Method | Antigen Detection System | Advantages | Limitations |
---|---|---|---|
Complement-dependent cytotoxicity [11] | Donor lymphocytes Rabbit complement | PPV+++ of hyperacute rejection | Low sensitivity for low-level antibodies FP may be caused by non-HLA or auto-antibodies |
Flow cytometry [12] | Donor lymphocytes Fluorescently labeled antibody to T/B cells and to IgG | More sensitive than CDC Detects low-level DSA Predictive of early AMR | Positivity may be due to nonspecific antibody confirmed by a positive auto-XM In absence of DSA by SAB, a positive FC XM is not predictive of reaction |
ELISA [13] | HLA molecules from platelet donors or EBV-transformed cells on a microtiter plate | First assays to use captured HLA proteins, enabling testing without donor cells | Low sensitivity and specificity |
Bead-based assays on Luminex [14] | HLA-purified antigen on plastic beads Fluorescently labeled antibody to IgG. Beads can have a mix or individual HLA (SAB) | More sensitivity and specificity than CDC and FC in sensitized patients Less FP than ELISA, especially for class II antibody | Interpretation requires expertise Significant variations between laboratories and kits FP reactions for denatured conformation of HLA on bead surface not correlated with AMR |
Drug | Mechanism of Action |
---|---|
Rituximab | Murine/human mAb binding CD20 present on pre-B and mature lymphocytes |
Daratumumab | IgG1k-humanized mAb directed against CD38 |
Eculizumab | mAb-binding protein C5, inhibiting cleavage to C5a and C5b and formation of membrane attack complex C5b-9 |
C1 esterase inhibitor | Inhibits activation of complement and intrinsic coagulation pathway |
Tocilizumab | Recombinant humanized antihuman IL6 receptor mAb. Binds both soluble and membrane-bound IL6R |
Clazakizumab | Genetically engineered, humanized IgG1 mAb; IL6 ligand inhibition |
IgG-degrading enzyme of S. pyogenes. IdeS | Enzyme that cleaves all 4 IgG antibodies into F(ab)2 and Fc |
rATG Alone (n = 10) | rATG + RTX (n = 10) | rATG + Bortezomib (n = 10) | rATG + RTX + Bortezomib (n = 10) | p-Value | |
---|---|---|---|---|---|
Development of de novo DSA | 3/10 (30%) | 3/10 (30%) | 1/10 (10%) | 3/10 (30%) | 0.70 |
Time to de novo iDSA appearance (days) | 38 | 101 | 10 | 185 | 0.33 |
Time to de novo iDSA peak (days) | 38 | 323 | 11 | 186 | 0.13 |
De novo iDSA level at the end of 1-year follow-up (MFI) | 0 | 0 | 0 | 0 | 0.68 |
Number of patients with increase in de novo iDSA | 0/3 | 1/3 | 0/1 | 0/3 | 1.00 |
Number of patients with decrease in de novo iDSA | 3/3 | 2/3 | 1/1 | 3/3 | 1.00 |
Transplant | Sensitization | Treatment | Anticd38 Use | Evolution |
---|---|---|---|---|
Heart + kidney | Immunized: Preformed DSA | Steroid Pulse +ATG+IVIG+RTX+ Eculizumab | 16 mg/kg infusion for 8 weeks | Clinical good HLA dramatic decline |
Kidney | Immunized: preformed DSA | No treatment added to the standard of care | 16 mg/kg for 8 weeks + 1 monthly infusion for 9 months | DSA undetectable Stabilization of renal function |
Kidney | Immunized: AB0i (Anti A) | Steroid pulses ATG Immunoadsorption Eculizumab | 16 mg/kg for 6-week infusions | Kidney function recovered Reduction in anti A titer |
Heart | Immunized: Preformed DSA | Steroid pulses Immunoadsorption | 16 mg/kg infusion for 8 weeks + 1 infusion monthly for 9 months | Improvement Only slight reduction in DSA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvadori, M. Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation. Transplantology 2023, 4, 139-150. https://doi.org/10.3390/transplantology4030014
Salvadori M. Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation. Transplantology. 2023; 4(3):139-150. https://doi.org/10.3390/transplantology4030014
Chicago/Turabian StyleSalvadori, Maurizio. 2023. "Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation" Transplantology 4, no. 3: 139-150. https://doi.org/10.3390/transplantology4030014
APA StyleSalvadori, M. (2023). Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation. Transplantology, 4(3), 139-150. https://doi.org/10.3390/transplantology4030014