Evolving Biomarkers in Kidney Transplantation
Abstract
:1. Introduction and Definitions
2. Donor-Derived Cell-Free DNA (dd-cfDNA)
3. Gene Expression Profiles as Biomarkers
4. Urinary RNA Profile for the Diagnosis of Rejection
- The rapidly evolving field of biomarker-informed precision medicine will be led astray if clinicians do not continually inform the data to turn it into useful information that can help patients
- This principle is not new, but the allure of a new and “easy” test result that gives us “all the answers” is seductive
- We must remember that our value to the patient remains being the link between the stream of data and the clinical reality
- Lastly, we are dealing with complex patients with complicated intersections of disease states that are in near-constant flux
- These are the main challenges in finding new biomarkers. To date, dd-cf DNA, gene expression profile, and some urinary mRNA substances are good diagnostic and prognostic biomarkers, while we are still waiting for new reliable monitoring and treatment response biomarkers.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naesens, M.; Anglicheau, D. Precision Transplant Medicine: Biomarkers to the Rescue. J. Am. Soc. Nephrol. 2018, 29, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, M.; Tsalouchos, A. Microbiota, renal disease and renal transplantation. World J. Transplant. 2021, 11, 16–36. [Google Scholar] [CrossRef]
- Anglicheau, D.; Naesens, M.; Essig, M.; Gwinner, W.; Marquet, P. Establishing Biomarkers in Transplant Medicine: A Critical Review of Current Approaches. Transplantation 2016, 100, 2024–2038. [Google Scholar] [CrossRef] [PubMed]
- Anglicheau, D.; Muthukumar, T.; Hummel, A.; Ding, R.; Sharma, V.K.; Dadhania, D.; Seshan, S.V.; Schwartz, J.E.; Suthanthiran, M. Discovery and Validation of a Molecular Signature for the Noninvasive Diagnosis of Human Renal Allograft Fibrosis. Transplantation 2012, 93, 1136–1146. [Google Scholar] [CrossRef]
- Roedder, S.; Sigdel, T.; Salomonis, N.; Hsieh, S.; Dai, H.; Bestard, O.; Metes, D.; Zeevi, A.; Gritsch, A.; Cheeseman, J.; et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: Results of the multicenter AART study. PLoS Med. 2014, 11, e1001759. [Google Scholar] [CrossRef] [PubMed]
- Kurian, S.M.; Williams, A.N.; Gelbart, T.; Campbell, D.; Mondala, T.S.; Head, S.R.; Horvath, S.; Gaber, L.; Thompson, R.; Whisenant, T.; et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling. Am. J. Transplant. 2014, 14, 1164–1172. [Google Scholar] [CrossRef]
- Loupy, A.; Lefaucheur, C.; Vernerey, D.; Prugger, C.; Duong van Huyen, J.P.; Mooney, N.; Suberbielle, C.; Frémeaux-Bacchi, V.; Méjean, A.; Desgrandchamps, F.; et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. N. Engl. J. Med. 2013, 369, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Sicard, A.; Ducreux, S.; Rabeyrin, M.; Couzi, L.; McGregor, B.; Badet, L.; Scoazec, J.Y.; Bachelet, T.; Lepreux, S.; Visentin, J.; et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J. Am. Soc. Nephrol. 2015, 26, 457–467. [Google Scholar] [CrossRef]
- Einecke, G.; Reeve, J.; Sis, B.; Mengel, M.; Hidalgo, L.; Famulski, K.S.; Matas, A.; Kasiske, B.; Kaplan, B.; Halloran, P.F. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J. Clin. Investig. 2010, 120, 1862–1872. [Google Scholar] [CrossRef]
- Loupy, A.; Lefaucheur, C.; Vernerey, D.; Chang, J.; Hidalgo, L.G.; Beuscart, T.; Verine, J.; Aubert, O.; Dubleumortier, S.; Duong van Huyen, J.P.; et al. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection. J. Am. Soc. Nephrol. 2014, 25, 2267–2277. [Google Scholar] [CrossRef]
- O’Connell, P.J.; Zhang, W.; Menon, M.C.; Yi, Z.; Schröppel, B.; Gallon, L.; Luan, Y.; Rosales, I.A.; Ge, Y.; Losic, B.; et al. Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: A multicentre, prospective study. Lancet 2016, 388, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Gielis, E.M.; Ledeganck, K.J.; De Winter, B.Y.; Del Favero, J.; Bosmans, J.L.; Claas, F.H.; Abramowicz, D.; Eikmans, M. Cell-Free DNA: An Upcoming Biomarker in Transplantation. Am. J. Transplant. 2015, 15, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.; Bierau, S.; Balzer, S.; Andag, R.; Kanzow, P.; Schmitz, J.; Gaedcke, J.; Moerer, O.; Slotta, J.E.; Walson, P.; et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin. Chem. 2013, 59, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tong, K.L.; Li, P.K.; Chan, A.Y.; Yeung, C.K.; Pang, C.C.; Wong, T.Y.; Lee, K.C.; Lo, Y.M. Presence of donor- and recipient-derived DNA in cell-free urine samples of renal transplantation recipients: Urinary DNA chimerism. Clin. Chem. 1999, 45, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- García Moreira, V.; Prieto García, B.; Baltar Martín, J.M.; Ortega Suárez, F.; Alvarez, F.V. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin. Chem. 2009, 55, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, T.K.; Vitalone, M.J.; Tran, T.Q.; Dai, H.; Hsieh, S.C.; Salvatierra, O.; Sarwal, M.M. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation 2013, 96, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Botezatu, I.; Serdyuk, O.; Potapova, G.; Shelepov, V.; Alechina, R.; Molyaka, Y.; Ananév, V.; Bazin, I.; Garin, A.; Narimanov, M.; et al. Genetic analysis of DNA excreted in urine: A new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin. Chem. 2000, 46, 1078–1084. [Google Scholar] [CrossRef]
- Osmanodja, B.; Akifova, A.; Budde, K.; Choi, M.; Oellerich, M.; Schütz, E.; Beck, J. Absolute or Relative Quantification of Donor-derived Cell-free DNA in Kidney Transplant Recipients: Case Series. Transplant. Direct. 2021, 7, e778. [Google Scholar] [CrossRef] [PubMed]
- Graver, A.S.; Lee, D.; Power, D.A.; Whitlam, J.B. Understanding Donor-derived Cell-free DNA in Kidney Transplantation: An Overview and Case-based Guide for Clinicians. Transplantation 2023, 107, 1675–1686. [Google Scholar] [CrossRef]
- Sigdel, T.K.; Archila, F.A.; Constantin, T.; Prins, S.A.; Liberto, J.; Damm, I.; Towfighi, P.; Navarro, S.; Kirkizlar, E.; Demko, Z.P.; et al. Optimizing Detection of Kidney Transplant Injury by Assessment of Donor-Derived Cell-Free DNA via Massively Multiplex PCR. J. Clin. Med. 2018, 8, 19. [Google Scholar] [CrossRef]
- Bloom, R.D.; Bromberg, J.S.; Poggio, E.D.; Bunnapradist, S.; Langone, A.J.; Sood, P.; Matas, A.J.; Mehta, S.; Mannon, R.B.; Sharfuddin, A.; et al. Circulating Donor-Derived Cell-Free DNA in Blood for Diagnosing Active Rejection in Kidney Transplant Recipients (DART) Study Investigators. Cell-Free DNA and Active Rejection in Kidney Allografts. J. Am. Soc. Nephrol. 2017, 28, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Wijtvliet, V.P.W.M.; Plaeke, P.; Abrams, S.; Hens, N.; Gielis, E.M.; Hellemans, R.; Massart, A.; Hesselink, D.A.; De Winter, B.Y.; Abramowicz, D.; et al. Donor-derived cell-free DNA as a biomarker for rejection after kidney transplantation: A systematic review and meta-analysis. Transpl. Int. 2020, 33, 1626–1642. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Gao, F.; Pang, Q.; Xia, Q.; Zeng, X.; Peng, J.; Fan, L.; Liu, J.; Wang, Z.; Li, H. Diagnostic Accuracy of Donor-derived Cell-free DNA in Renal-allograft Rejection: A Meta-analysis. Transplantation 2021, 105, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Oellerich, M.; Shipkova, M.; Asendorf, T.; Walson, P.D.; Schauerte, V.; Mettenmeyer, N.; Kabakchiev, M.; Hasche, G.; Gröne, H.J.; Friede, T.; et al. Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: Results from a prospective observational study. Am. J. Transplant. 2019, 19, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
- Whitlam, J.B.; Ling, L.; Skene, A.; Kanellis, J.; Ierino, F.L.; Slater, H.R.; Bruno, D.L.; Power, D.A. Diagnostic application of kidney allograft-derived absolute cell-free DNA levels during transplant dysfunction. Am. J. Transplant. 2019, 19, 1037–1049. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, C.; Li, X.; Fu, Q.; Li, J.; Su, Q.; Zeng, L.; Liu, Z.; Wang, J.; Huang, H.; et al. Diagnostic Performance of Donor-Derived Plasma Cell-Free DNA Fraction for Antibody-Mediated Rejection in Post Renal Transplant Recipients: A Prospective Observational Study. Front. Immunol. 2020, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, J.S.; Brennan, D.C.; Poggio, E.; Bunnapradist, S.; Langone, A.; Sood, P.; Matas, A.J.; Mannon, R.B.; Mehta, S.; Sharfuddin, A.; et al. Biological Variation of Donor-Derived Cell-Free DNA in Renal Transplant Recipients: Clinical Implications. J. Appl. Lab. Med. 2017, 2, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Sethi, S.; Peng, A.; Najjar, R.; Mirocha, J.; Haas, M.; Vo, A.; Jordan, S.C. Early clinical experience using donor-derived cell-free DNA to detect rejection in kidney transplant recipients. Am. J. Transplant. 2019, 19, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Loupy, A. Antibody-Mediated Rejection of Solid-Organ Allografts. N. Engl. J. Med. 2018, 379, 2580–2582. [Google Scholar]
- Haas, M.; Loupy, A.; Lefaucheur, C.; Roufosse, C.; Glotz, D.; Seron, D.; Nankivell, B.J.; Halloran, P.F.; Colvin, R.B.; Akalin, E.; et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 2018, 18, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Stites, E.; Kumar, D.; Olaitan, O.; John Swanson, S.; Leca, N.; Weir, M.; Bromberg, J.; Melancon, J.; Agha, I.; Fattah, H.; et al. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. Am. J. Transplant. 2020, 20, 2491–2498. [Google Scholar] [CrossRef] [PubMed]
- Pallardó Mateu, L.M.; Sancho Calabuig, A.; Capdevila Plaza, L.; Franco Esteve, A. Acute rejection and late renal transplant failure: Risk factors and prognosis. Nephrol. Dial. Transplant. 2004, 19 (Suppl. S3), iii38–iii42. [Google Scholar] [CrossRef] [PubMed]
- Jevnikar, A.M.; Mannon, R.B. Late kidney allograft loss: What we know about it, and what we can do about it. Clin. J. Am. Soc. Nephrol. 2008, 3 (Suppl. S2), S56–S67. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.E.; Gralla, K.; Chan, K. Clinical significance of post kidney transplant de novo DSA in otherwise stable grafts. Clin. Transpl. 2011, 35, 359–364. [Google Scholar]
- Bu, L.; Gupta, G.; Pai, A.; Anand, S.; Stites, E.; Moinuddin, I.; Bowers, V.; Jain, P.; Axelrod, D.A.; Weir, M.R.; et al. Clinical outcomes from the Assessing Donor-derived cell-free DNA Monitoring Insights of kidney Allografts with Longitudinal surveillance (ADMIRAL) study. Kidney Int. 2022, 101, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.A.; Lim, W.H.; Wong, G.; Chadban, S.J. Relationship between eGFR Decline and Hard Outcomes after Kidney Transplants. J. Am. Soc. Nephrol. 2016, 27, 3440–3446. [Google Scholar] [CrossRef] [PubMed]
- Faddoul, G.; Nadkarni, G.N.; Bridges, N.D.; Goebel, J.; Hricik, D.E.; Formica, R.; Menon, M.C.; Morrison, Y.; Murphy, B.; Newell, K.; et al. Analysis of Biomarkers Within the Initial 2 Years Posttransplant and 5-Year Kidney Transplant Outcomes: Results From Clinical Trials in Organ Transplantation-17. Transplantation 2018, 102, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Nankivell, B.J.; Agrawal, N.; Sharma, A.; Taverniti, A.; P’Ng, C.H.; Shingde, M.; Wong, G.; Chapman, J.R. The clinical and pathological significance of borderline T cell-mediated rejection. Am. J. Transplant. 2019, 19, 1452–1463. [Google Scholar] [CrossRef]
- Seifert, M.E.; Yanik, M.V.; Feig, D.I.; Hauptfeld-Dolejsek, V.; Mroczek-Musulman, E.C.; Kelly, D.R.; Rosenblum, F.; Mannon, R.B. Subclinical inflammation phenotypes and long-term outcomes after pediatric kidney transplantation. Am. J. Transplant. 2018, 18, 2189–2199. [Google Scholar] [CrossRef]
- Mehta, R.; Bhusal, S.; Randhawa, P.; Sood, P.; Cherukuri, A.; Wu, C.; Puttarajappa, C.; Hoffman, W.; Shah, N.; Mangiola, M.; et al. Short-term adverse effects of early subclinical allograft inflammation in kidney transplant recipients with a rapid steroid withdrawal protocol. Am. J. Transplant. 2018, 18, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, J.J.; Kurian, S.M.; Heilman, R.L.; Whisenant, T.C.; Poggio, E.D.; Marsh, C.; Baliga, P.; Odim, J.; Brown, M.M.; Ikle, D.N.; et al. Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant. Am. J. Transplant. 2019, 19, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Hricik, D.E.; Nickerson, P.; Formica, R.N.; Poggio, E.D.; Rush, D.; Newell, K.A.; Goebel, J.; Gibson, I.W.; Fairchild, R.L.; Riggs, M.; et al. CTOT-01 consortium.Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am. J. Transplant. 2013, 13, 2634–2644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yi, Z.; Keung, K.L.; Shang, H.; Wei, C.; Cravedi, P.; Sun, Z.; Xi, C.; Woytovich, C.; Farouk, S.; et al. A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. J. Am. Soc. Nephrol. 2019, 30, 1481–1494. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, S.; Naesens, M. Foretelling Graft Outcome by Molecular Evaluation of Renal Allograft Biopsies: The GoCAR Study. Transplantation 2017, 101, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Marsh, C.L.; Kurian, S.M.; Rice, J.C.; Whisenant, T.C.; David, J.; Rose, S.; Schieve, C.; Lee, D.; Case, J.; Barrick, B.; et al. Application of TruGraf v1: A Novel Molecular Biomarker for Managing Kidney Transplant Recipients With Stable Renal Function. Transplant. Proc. 2019, 51, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Heilman, R.L.; Fleming, J.N.; Mai, M.; Smith, B.; Park, W.D.; Holman, J.; Stegall, M.D. Multiple abnormal peripheral blood gene expression assay results are correlated with subsequent graft loss after kidney transplantation. Clin. Transplant. 2023, 37, e14987. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Guo, K.; Heilman, R.L.; Poggio, E.D.; Taber, D.J.; Marsh, C.L.; Kurian, S.M.; Kleiboeker, S.; Weems, J.; Holman, J.; et al. Combining Blood Gene Expression and Cellfree DNA to Diagnose Subclinical Rejection in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2021, 16, 1539–1551. [Google Scholar] [CrossRef]
- Li, B.; Hartono, C.; Ding, R.; Sharma, V.K.; Ramaswamy, R.; Qian, B.; Serur, D.; Mouradian, J.; Schwartz, J.E.; Suthanthiran, M. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med. 2001, 344, 947–954. [Google Scholar] [CrossRef]
- Suthanthiran, M.; Schwartz, J.E.; Ding, R.; Abecassis, M.; Dadhania, D.; Samstein, B.; Knechtle, S.J.; Friedewald, J.; Becker, Y.T.; Sharma, V.K.; et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N. Engl. J. Med. 2013, 369, 20–31. [Google Scholar] [CrossRef]
- Lubetzky, M.L.; Salinas, T.; Schwartz, J.E.; Suthanthiran, M. Urinary Cell mRNA Profiles Predictive of Human Kidney Allograft Status. Clin. J. Am. Soc. Nephrol. 2021, 16, 1565–1577. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, T.; Dadhania, D.; Ding, R.; Snopkowski, C.; Naqvi, R.; Lee, J.B.; Hartono, C.; Li, B.; Sharma, V.K.; Seshan, S.V.; et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N. Engl. J. Med. 2005, 35, 2342–2351. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Wiebe, C.; Gibson, I.W.; Rush, D.N.; Nickerson, P.W. Immune monitoring of kidney allografts. Am. J. Kidney Dis. 2012, 60, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Panzer, U.; Reinking, R.R.; Steinmetz, O.M.; Zahner, G.; Sudbeck, U.; Fehr, S.; Pfalzer, B.; Schneider, A.; Thaiss, F.; Mack, M.; et al. CXCR3 and CCR5 positive T-cell recruitment in acute human renal allograft rejection. Transplantation 2004, 78, 1341–1350. [Google Scholar] [CrossRef]
- Qin, S.; Rottman, J.B.; Myers, P.; Kassam, N.; Weinblatt, M.; Loetscher, M.; Koch, A.E.; Moser, B.; Mackay, C.R. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Investig. 1998, 101, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Tinel, C.; Devresse, A.; Vermorel, A.; Sauvaget, V.; Marx, D.; Avettand-Fenoel, V.; Amrouche, L.; Timsit, M.O.; Snanoudj, R.; Caillard, S.; et al. Development and validation of an optimized integrative model using urinary chemokines for noninvasive diagnosis of acute allograft rejection. Am. J. Transplant. 2020, 20, 3462–3476. [Google Scholar] [CrossRef]
- Hirt-Minkowski, P.; Handschin, J.; Stampf, S.; Hopfer, H.; Menter, T.; Senn, L.; Hönger, G.; Wehmeier, C.; Amico, P.; Steiger, J.; et al. Randomized Trial to Assess the Clinical Utility of Renal Allograft Monitoring by Urine CXCL10 Chemokine. J. Am. Soc. Nephrol. 2023, 34, 1456–1469. [Google Scholar] [CrossRef]
- Hricik, D.E.; Formica, R.N.; Nickerson, P.; Rush, D.; Fairchild, R.L.; Poggio, E.D.; Gibson, I.W.; Wiebe, C.; Tinckam, K.; Bunnapradist, S.; et al. Adverse Outcomes of Tacrolimus Withdrawal in Immune-Quiescent Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2015, 26, 3114–3122. [Google Scholar] [CrossRef]
Serum creatinine testing | Creatinine is a lagging and nonspecific marker of injury |
Urine testing | Nonspecific (in particular urinalysis) |
Transplant ultrasonography | Nonspecific |
Screening and monitoring donor specific antibodies (DSA) | Not all DSAs are overtly pathogenic, many unknown non-HLA Abs |
Drug level monitoring | Nonspecific |
Renal biopsy | Expensive and not without complications Subject to sampling error and interpreter variability Histologic assessment has limitations |
Biomarker Type | Biomarker Definition | Established Examples in Transplantation | Potential New Examples in Transplantation |
---|---|---|---|
Diagnostic biomarker | A biomarker used to identify individuals with the disease or condition of interest or define a subset of the disease | Serum creatinine Proteinuria Hematuria associated with DSA Lab of hemolysis (only in some acute rejections) Renal ultrasound examination Protocol or for cause biopsy histology | Urinary three-gene mRNA expression signature and wide range of other suggested molecules [3,4] Wide range of urinary target proteins, like CXCL10 and CXCL9 [3] Blood 17-gene mRNA expression “kSORT” [5] Blood 200-gene mRNA expression “TruGraf” [6] Several blood and urine mRNAs [3] Molecular microscope for allograft pathology |
Prognostic biomarker | A biomarker used to identify likelihood of a clinical event, disease recurrence, or progression | Serum creatinine Proteinuria DSA (Only in some cases of acute rejection) Protocol or for cause biopsy histology | Complement-fixing characteristics of DSA [7,8] Edmonton classifier for graft loss [9] Edmonton ABMR molecular score [10] GOCAR 13-gene set [11] |
Monitoring biomarker | A biomarker measured serially and used to detect a change in the degree or extent of disease; monitoring biomarkers may also be used to indicate toxicity, assess safety, or provide evidence of exposure, including exposures to medical products | Serum creatinine Proteinuria Hematuria Immunosuppressive drug levels BKV/PCR Signs of hemolysis | There are currently no new monitoring biomarkers proposed in kidney transplantation |
Pharmacodynamics/response biomarker | A biomarker used to show that a biologic response has occurred in an individual who has received an intervention or exposure | CD19/CD20 count with rituximab treatment DSA mean fluorescence index after AMMR treatment Post-treatment control biopsy histology | There are currently no new pharmacodynamics/response biomarkers proposed in kidney transplantation |
Potential Benefits | Pitfalls |
---|---|
Noninvasive blood biomarker | Fractional quantification affected by changes in rdcfDNA (recipient-derived cell free DNA) |
Applicable to all solid organ transplantation | Does not exclude TCMR (if ddcfDNA normal) |
Elevations may occur up to 30 days before histologic changes | Elevated in nonrejection pathologies associated with tissue injury (BKV, CVNI toxicity) |
Absolute quantification of ddcfDNA not affected by changes in rdcfDNA | Not recommended for use in early posttransplant period |
Avoidance of protocol biopsy | No recommended flor use for 24 h post-biopsy |
Avoidance of unnecessary biopsies | Confounded in pregnancy |
Noninvasive diagnosis of AMR | Confounders in some repeat and multi-organ transplants |
Assessment of response to rejection treatment | |
Indicator for treatment of chronic active AMR |
Acute rejection (median) | 2.32% |
Non-acute rejection (median) | 0.47% |
Area under curve | 0.87 |
Sensitivity | 88.7% |
Specificity | 72.6% |
Positive predictive value | 52% |
Negative predictive value | 95.1% |
Statistics | Low (dd-cfDNA < 0.5%) | Hgh (dd-cfDNA > 0.5%) | p-Value | |
---|---|---|---|---|
dd-cfDNA value (%) | Mean (SD) | 0.25 (0.087) | 1.76 (1.40) | - |
Median | 0.21 (0.19, 0.29) | 1.40 (0.87, 2.02) | - | |
Min, Max | 0.19, 0.49 | 0.52, 6.70 | - | |
% Change in eGFR | Mean (SD) | −0.40 (18.149) | −8.64 (11.98) | 0.0040 |
Median | 0.00 (−0.92, 4.76) | −7.50 (−16.22, −1.39) | ||
Min, Max | −70.73, 33.33 | −37–50, 32.65 | ||
Presence of DSAs | 1/37 (2.7%) | 17/42 (40.5%) | <0.0001 | |
Recurrent Rejection | 0/37 (0.0%) | 9/42 (21.4%) | 0.0028 |
Symbol | RefSeq | Name | p-Value |
---|---|---|---|
ZMAT1 | NM_001011657 | Zinc finger, matrin type 1 | 0.01 |
ETAA1 | NM_019002 | Ewing tumor.associated antigen 1 | 0.04 |
ZNF493 | NM_001076678 | Zinc finger protein 493 | 0.002 |
CCDC82 | NM_024725 | Coiled-coil domain containing 82 | 0.02 |
NFYB | NM_006166 | Nuclear transcription factor Y, β | 0.03 |
SENP7 | NM_001077203 | SUMO1/sentrin specific peptidase 7 | <0.001 |
CLK1 | NM_001162407 | CDC-like kinase 1 | 0.01 |
SENP6 | NM_001100409 | SUMO1/sentrin specific peptidase 6 | 0.01 |
C1GALT1C1 | NM_001011551 | C1GALT1-specific chaperone 1 | 0.01 |
SPCS3 | NM_021928 | Signal peptidase complex subunit 3 homolog (S,. cerevisiae) | 0.03 |
MAP1A | NM_002373 | Microtubule-associated protein 1A | 0.01 |
EFTUD2 | NM_001142605 | Elongation factor Tu GTP binding domain containing 2 | 0.001 |
AP1M1 | NM_001130524 | Adaptor-related protein complex 1, mu 1 subunit | <0001 |
ANXA5 | NM_001154 | Annexin A5 | <0.001 |
TSC22D1 | NM_001243797 | TSC22 domain family, member 1 | 0.01 |
F13A1 | NM_000129 | Coagulation factor XIII, A1 polypeptide | 0.02 |
TUBB1 | NM_030773 | Tubulin, β1 class VI | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvadori, M.; Rosati, A.; Rosso, G. Evolving Biomarkers in Kidney Transplantation. Transplantology 2024, 5, 116-128. https://doi.org/10.3390/transplantology5030012
Salvadori M, Rosati A, Rosso G. Evolving Biomarkers in Kidney Transplantation. Transplantology. 2024; 5(3):116-128. https://doi.org/10.3390/transplantology5030012
Chicago/Turabian StyleSalvadori, Maurizio, Alberto Rosati, and Giuseppina Rosso. 2024. "Evolving Biomarkers in Kidney Transplantation" Transplantology 5, no. 3: 116-128. https://doi.org/10.3390/transplantology5030012
APA StyleSalvadori, M., Rosati, A., & Rosso, G. (2024). Evolving Biomarkers in Kidney Transplantation. Transplantology, 5(3), 116-128. https://doi.org/10.3390/transplantology5030012