Updates on the Management of Hyperglycemia in Hospitalized Adult Patients
Abstract
:1. Introduction
2. Hyperglycemia and Hospitalization Outcomes
3. Hypoglycemia and Hospitalization Outcomes
4. Glycemic Targets and Management of Hyperglycemia in Critically Ill Patients in Intensive Care Units (ICUs)
4.1. Glycemic Targets in ICU Settings
4.2. Treatment of Hyperglycemia in the ICU Settings
5. Glycemic Targets and the Management of Hyperglycemia in Noncritically Ill Patients
6. Medical Nutrition Therapy in Hospitalized Patients with Diabetes
7. The Management of Steroid-Induced Hyperglycemia in Hospitalized Patients
8. The Use of Glucose-Monitoring Devices and Closed-Loop Insulin Pumps in the Hospital Settings
9. Diabetes Consultation and Discharge Planning
10. Updates in the Management of Hyperglycemic Emergencies
11. Summary
12. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Atlas 10th Edition. 2021. Available online: https://diabetesatlas.org/atlas/tenth-edition/ (accessed on 1 July 2021).
- National Diabetes Statistics Report. 2022. Available online: https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 1 January 2022).
- Harding, J.L.; Benoit, S.R.; Gregg, E.W.; Pavkov, M.E.; Perreault, L. Trends in rates of infections requiring hospitalization among adults with versus without diabetes in the U.S., 2000–2015. Diabetes Care 2019, 43, 106–116. [Google Scholar]
- Jiang, H.J.; Stryer, D.; Friedman, B.; Andrews, R. Multiple hospitalizations for patients with diabetes. Diabetes Care 2003, 26, 1421–1426. [Google Scholar]
- Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Barnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018, 41, 963–970. [Google Scholar]
- American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar]
- Esposito, K.; Nappo, F.; Marfella, R.; Guigliano, G.; Guigliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Guigliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002, 106, 2067–2072. [Google Scholar]
- Umpierrez, G.E.; Hellman, R.; Korytkowski, M.T.; Kosiborod, M.; Maynard, G.A.; Montori, V.M.; Seley, J.J.; Van den Berghe, G. Management of hyperglycemia in hospitalized patients in non-critical care setting: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2012, 97, 16–38. [Google Scholar]
- Swanson, C.; Potter, D.; Kongable, G.; Cook, C. Update on inpatient glycemic control in hospitals in the United States. Endocr. Pract. 2017, 17, 853–861. [Google Scholar]
- Carpenter, D.L.; Gregg, S.R.; Xu, K.; Buchman, T.G.; Coopersmith, C.M. Prevalence and impact of unknown diabetes in the ICU. Crit. Care Med. 2015, 43, e541–e550. [Google Scholar]
- Schmeltz, L.R.; DeSantis, A.J.; Thiyagarajan, V.; Schmidt, K.; Shea-Mahler, E.; Johnson, D.; Henske, J.; McCarthy, P.M.; Gleason, T.G.; McGee, E.C.; et al. Reduction of surgical mortality and morbidity in diabetic patients undergoing cardiac surgery with a combined intravenous and subcutaneous insulin glucose management strategy. Diabetes Care 2007, 30, 823–828. [Google Scholar]
- Kar, P.; Plummer, M.P.; Ali Abdelhamid, Y.; Giersch, E.J.; Summers, M.J.; Weinel, L.M.; Finnis, M.E.; Phillips, L.K.; Jones, K.L.; Horowitz, M.; et al. Incident diabetes in survivors of critical illness and mechanisms underlying persistent glucose intolerance: A prospective cohort study. Crit. Care Med. 2019, 47, e103–e111. [Google Scholar]
- Van Ackerbroeck, S.; Schepens, T.; Janssens, K.; Jorens, P.G.; Verbrugge, W.; Collet, S.; Van Hoof, V.; Van Gaal, L.; De Block, C. Incidence and predisposing factors for the development of disturbed glucose metabolism and DIabetes mellitus AFter Intensive Care admission: The DIAFIC study. Crit. Care 2015, 19, 355. [Google Scholar]
- Duggan, E.W.; Carlson, K.; Umpierrez, G.E. Perioperative Hyperglycemia Management: An Update. Anesthesiology 2017, 126, 547–560. [Google Scholar]
- Andreadi, A.; Muscoli, S.; Tajmir, R.; Meloni, M.; Muscoli, C.; Ilari, S.; Mollace, V.; Della Morte, D.; Bellia, A.; Di Daniele, N.; et al. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int. J. Mol. Sci. 2023, 24, 1646. [Google Scholar]
- Pasquel, F.J.; Gomez-Huelgas, R.; Anzola, I.; Oyedokun, F.; Haw, J.S.; Vellanki, P.; Peng, L.; Umpierrez, G.E. Predictive value of admission hemoglobin A1c on inpatient glycemic control and response to insulin therapy in medicine and surgery patients with type 2 diabetes. Diabetes Care 2015, 38, e202–e203. [Google Scholar]
- Mauermann, W.J.; Nemergut, E.C. The anesthesiologist’s role in the prevention of surgical site infections. Anesthesiology 2006, 105, 413–421; [Google Scholar] [CrossRef]
- Montori, V.M.; Bistrian, B.R.; McMahon, M.M. Hyperglycemia in acutely ill patients. JAMA 2002, 288, 2167–2169. [Google Scholar]
- Moghissi, E.S.; Korytkowski, M.T.; Dinardo, M.M.; Hellman, R.; Hirsch, I.B.; Inzucchi, S.; Ismail-Beigi, F.; Kirkman, M.S.; Umpierrez, G.E. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 2009, 32, 1119–1131. [Google Scholar]
- Umpierrez, G.E.; Isaacs, S.D.; Bazargan, N.; You, X.; Thaler, L.M.; Kitabchi, A.E. Hyperglycemia: An independent marker of in-hospital mortality in patients with undiagnosed diabetes. J. Clin. Endocrinol. Metab. 2002, 87, 978–982. [Google Scholar]
- Ramos, M.; Khalpey, Z.; Lipsitz, S.; Steinberg, J.; Panizales, M.T.; Zinner, M.; Rogers, S.O. Relationship of perioperative hyperglycemia and postoperative infections in patients who undergo general and vascular surgery. Ann. Surg. 2008, 248, 585–591. [Google Scholar]
- Noordzij, P.G.; Boersma, E.; Schreiner, F.; Kertai, M.D.; Feringa, H.H.; Dunkelgrun, M.; Bax, J.J.; Klein, J.; Poldermans, D. Increased preoperative glucose levels are associated with perioperative mortality in patients undergoing noncardiac, nonvascular surgery. Eur. J. Endocrinol. 2007, 156, 137–142. [Google Scholar]
- McAlister, F.A.; Majumdar, S.R.; Blitz, S.; Rowe, B.H.; Romney, J.; Marrie, T.J. The relation between hyperglycemia and outcomes in 2471 patients admitted to the hospital with community-acquired pneumonia. Diabetes Care 2005, 28, 810–815. [Google Scholar]
- Kyi, M.; Colman, P.G.; Wraight, P.R.; Reid, J.; Gorelik, A.; Galligan, A.; Kumar, S.; Rowan, L.M.; Marley, K.A.; Nankervis, A.J.; et al. Early intervention for diabetes in medical and surgical inpatients decreases hyperglycemia and hospital-acquired infections: A cluster randomized trial. Diabetes Care 2019, 42, 832–840. [Google Scholar]
- Garg, R.; Schuman, B.; Bader, A.; Hurwitz, S.; Turchin, A.; Underwood, P.; Metzger, C.; Rein, R.; Lortie, M. Effect of preoperative diabetes management on glycemic control and clinical outcomes after elective surgery. Ann. Surg. 2018, 267, 858–862. [Google Scholar]
- Wang, Y.Y.; Hu, S.F.; Ying, H.M.; Chen, L.; Li, H.L.; Tian, F.; Zhou, Z.F. Postoperative tight glycemic control significantly reduces postoperative infection rates in patients undergoing surgery: A meta-analysis. BMC Endocr. Disord. 2018, 18, 42. [Google Scholar]
- Krinsley, J.S. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin. Proc. 2003, 78, 1471–1478. [Google Scholar]
- Le, V.T.; Ha, Q.H.; Tran, M.T.; Le, N.T.; Le, V.T.; Le, M.K. Hyperglycemia in Severe and Critical COVID-19 Patients: Risk Factors and Outcomes. Cureus 2022, 14, e27611. [Google Scholar]
- Bellia, A.; Andreadi, A.; Giudice, L.; De Taddeo, S.; Maiorino, A.; D’Ippolito, I.; Giorgino, F.M.; Ruotolo, V.; Romano, M.; Magrini, A.; et al. Atherogenic Dyslipidemia on Admission Is Associated With Poorer Outcome in People With and Without Diabetes Hospitalized for COVID-19. Diabetes Care 2021, 44, 2149–2157. [Google Scholar]
- American Diabetes Association. Diabetes Care in the Hospital, Standards of Medical Care in Diabetes. American Diabetes Association. Diabetes Care 2022, 45 (Suppl. 1), S244–S253. [Google Scholar] [CrossRef]
- Razavi Nematollahi, L.; Kitabchi, A.E.; Stentz, F.B.; Wan, J.Y.; Larijani, B.A.; Tehrani, M.M.; Gozashti, M.H.; Omidfar, K.; Taheri, E. Proinflammatory cytokines in response to insulin-induced hypoglycemic stress in healthy subjects. Metabolism 2009, 58, 443–448. [Google Scholar]
- International Hypoglycaemia Study Group. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019, 7, 385–396. [Google Scholar] [CrossRef]
- Desouza, C.V.; Bolli, G.B.; Fonseca, V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care 2010, 33, 1389–1394. [Google Scholar]
- Rajendran, R.; Rayman, G. Point-of-care blood glucose testing for diabetes care in hospitalized patients: An evidence-based review. J. Diabetes Sci. Technol. 2014, 8, 1081–1090. [Google Scholar]
- Dhatariya, K.; Mustafa, O.G.; Rayman, G. Safe care for people with diabetes in hospital. Clin. Med. 2020, 20, 21–27. [Google Scholar]
- Krinsley, J.S. Glycemic variability: A strong independent predictor of mortality in critically ill patients. Crit. Care Med. 2008, 36, 3008–3013. [Google Scholar]
- Lake, A.; Arthur, A.; Byrne, C.; Davenport, K.; Yamamoto, J.M.; Murphy, H.R. The effect of hypoglycaemia during hospital admission on health-related outcomes for people with diabetes: A systematic review and meta-analysis. Diabet. Med. 2019, 36, 1349–1359. [Google Scholar]
- Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Bouillon, R.; Lauwers, P. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar]
- Preiser, J.-C.; Devos, P.; Ruiz-Santana, S.; Melot, C.; Annane, D.; Groeneveld, J.; Iapichino, G.; Leverve, X.M.; Nitenberg, G.; Singer, P.; et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: The Glucontrol study. Intensive Care Med. 2009, 35, 1738–1748. [Google Scholar]
- Preiser, J.-C.; Brunkhorst, F. Tight glucose control and hypoglycemia. Crit. Care Med. 2008, 36, 1391–1392. [Google Scholar]
- Brunkhorst, F.M.; Engel, C.; Bloos, F.; Meier-Hellmann, A.; Ragaller, M.; Weiler, N.; Moerer, O.; Gruendling, M.; Oppert, M.; Grond, S.; et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 2008, 358, 125–139. [Google Scholar]
- Nice-Sugar Study Investigators. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar]
- Nice-Sugar Study Investigators. Hypoglycemia and risk of death in critically ill patients. N. Engl. J. Med. 2012, 367, 1108–1118. [Google Scholar]
- Gandhi, G.Y.; Nuttall, G.A.; Abel, M.D.; Mullany, C.J.; Schaff, H.V.; O’Brien, P.C.; Johnson, M.G.; Williams, A.R.; Cutshall, S.M.; Mundy, L.M.; et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: A randomized trial. Ann. Intern. Med. 2007, 146, 233–243. [Google Scholar]
- Hua, J.; Chen, G.; Li, H.; Fu, S.; Zhang, L.-M.; Scott, M.; Li, Q. Intensive intraoperative insulin therapy versus conventional insulin therapy during cardiac surgery: A meta-analysis. J. Cardiothorac. Vasc. Anesth. 2012, 26, 829–834. [Google Scholar]
- Umpierrez, G.; Cardona, S.; Pasquel, F.; Jacobs, S.; Peng, L.; Unigwe, M.; Newton, C.A.; Smiley-Byrd, D.; Vellanki, P.; Halkos, M.; et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care 2015, 38, 1665–1672. [Google Scholar]
- Jacobi, J.; Bircher, N.; Krinsley, J.; Agus, M.; Braithwaite, S.S.; Duutschman, C.; Freire, A.X.; Geehan, D.; Kohl, B.; Nasraway, S.A.; et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit. Care Med. 2012, 40, 3251–3276. [Google Scholar]
- Furnary, A.P.; Zerr, K.J.; Grunkemeier, G.L.; Starr, A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann. Thorac. Surg. 1999, 67, 352–360. [Google Scholar]
- Brown, G.; Dodek, P. Intravenous insulin nomogram improves blood glucose control in the critically ill. Crit. Care Med. 2001, 29, 1714–1719. [Google Scholar]
- Rea, R.S.; Donihi, A.C.; Bobeck, M.; Herout, P.; McKaveney, T.P.; Kane-Gill, S.L.; Korytkowski, M.T. Implementing an intravenous insulin infusion protocol in the intensive care unit. Am. J. Health-Syst. Pharm. 2007, 64, 385–395. [Google Scholar]
- Rattan, R.; Nasraway, S.A. The future is now: Software-guided intensive insulin therapy in the critically ill. J. Diabetes Sci. Technol. 2013, 7, 548–554. [Google Scholar]
- Newton, C.A.; Smiley, D.; Bode, B.W.; Kitabchi, A.E.; Davidson, P.C.; Jacobs, S.; Steed, R.D.; Stentz, F.; Peng, L.; Mulligan, P.; et al. A comparison study of continuous insulin infusion protocols in the medical intensive care unit: Computer-guided vs. standard column-based algorithms. J. Hosp. Med. 2010, 5, 432–437. [Google Scholar]
- Bouw, J.W.; Campbell, N.; Hull, M.A.; Juneja, R.; Guzman, O.; Overholser, B.R. A retrospective cohort study of a nurse-driven computerized insulin infusion program versus a paper-based protocol in critically ill patients. Diabetes Technol. Ther. 2012, 14, 125–130. [Google Scholar]
- Kalfon, P.; Giraudeau, B.; Ichai, C.; Guerrini, A.; Brechot, N.; Cinotti, R.; Dequin, P.-F.; Riu-Poulenc, B.; Montravers, P.; Annane, D.; et al. Tight computerized versus conventional glucose control in the ICU: A randomized controlled trial. Intensive Care Med. 2014, 40, 171–181. [Google Scholar] [CrossRef]
- King, A.B.; Armstrong, D.U. Basal bolus dosing: A clinical experience. Curr. Diabetes Rev. 2005, 1, 215–220. [Google Scholar]
- Umpierrez, G.E.; Smiley, D.; Zisman, A.; Prieto, L.M.; Palacio, A.; Ceron, M.; Puig, A.; Mejia, R. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes (RABBIT 2 trial). Diabetes Care 2007, 30, 2181–2186. [Google Scholar]
- Umpierrez, G.E.; Smiley, D.; Jacobs, S.; Peng, L.; Temponi, A.; Mulligan, P.; Umpierrez, D.; Newton, C.; Olson, D.; Rizzo, M. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 Surgery). Diabetes Care 2011, 34, 256–261. [Google Scholar]
- Umpierrez, G.E.; Smiley, D.; Hermayer, K.; Khan, A.; Olson, D.E.; Newton, C.; Jacobs, S.; Rizzo, M.; Peng, L.; Reyes, D.; et al. Randomized study comparing a basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: Basal plus trial. Diabetes Care 2013, 36, 2169–2174. [Google Scholar]
- Rubin, D.J.; Rybin, D.; Doros, G.; McDonnell, M.E. Weight-based, insulin dose-related hypoglycemia in hospitalized patients with diabetes. Diabetes Care 2011, 34, 1723–1728. [Google Scholar]
- Umpierrez, G.E.; Gianchandani, R.; Smiley, D.; Wesorick, D.H.; Newton, C.; Farrokhi, F.; Peng, L.; Lathkar-Pradhan, S.; Pasquel, F. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: A pilot, randomized, controlled study. Diabetes Care 2013, 36, 3430–3435. [Google Scholar]
- Lorenzo-Gonzalez, C.; Atienza-Sanchez, E.; Reyes-Umpierrez, D.; Vellanki, P.; Davis, G.M.; Pasquel, F.J.; Cardona, S.; Fayman, M.; Peng, L.; Umpierrez, G.E. Safety and efficacy of DDP-4 inhibitors for management of hospitalized general medicine and surgery patients with type 2 diabetes. Endocr. Pract. 2020, 26, 722–728. [Google Scholar]
- Gosmanov, A.R.; Umpierrez, G.E. Medical nutrition therapy in hospitalized patients with diabetes. Curr. Diabetes Rep. 2012, 12, 93–100. [Google Scholar]
- Schafer, R.G.; Bohannon, B.; Franz, M.; Freeman, J.; Holmes, A.; McLaughlin, S.; Haas, L.B.; Kruger, D.F.; Lorenz, R.A.; McMahon, M.M. Translation of the diabetes nutrition recommendations for health care institutions. Diabetes Care 1997, 20, 96–105. [Google Scholar]
- Via, M.A.; Mechanick, J.I. Inpatient enteral and parental nutrition for patients with diabetes. Curr. Diabetes Rep. 2011, 11, 99–105. [Google Scholar]
- Elia, M.; Ceriello, A.; Laube, H.; Sinclair, A.J.; Engfer, M.; Stratton, R.J. Enteral nutritional support and use of diabetes-specific formulas for patients with diabetes: A systematic review and meta-analysis. Diabetes Care 2005, 28, 2267–2279. [Google Scholar]
- Korytkowski, M.T.; Muniyappa, R.; Antinori-Lent, K.; Donihi, A.C.; Drincic, A.T.; Hirsch, I.B.; Luger, A.; McDonnell, M.E.; Murad, M.H.; Nielsen, C.; et al. Management of Hyperglycemia in Hospitalized Adult Patients in Non-Critical Care Settings: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2022, 107, 2101–2128. [Google Scholar]
- Narwani, V.; Swafe, L.; Stavraka, C.; Dhatariya, K. How frequently are bedside glucose levels measured in hospital inpatients on glucocorticoids? Clin. Med. 2014, 14, 327–328. [Google Scholar]
- Roberts, A.; James, J.; Dhatariya, K. Care oBotJBDSJfI. Management of hyperglycaemia and steroid (glucocorticoid) therapy: A guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group. Diabet. Med. 2018, 35, 1011–1017. [Google Scholar]
- Gomez, A.M.; Umpierrez, G.E. Continuous glucose monitoring in insulin-treated patients in non-ICU settings. J. Diabetes Sci. Technol. 2014, 8, 930–936. [Google Scholar]
- Levitt, D.L.; Spanakis, E.K.; Ryan, K.A.; Silver, K.D. Insulin pump and continuous glucose monitor initiation in hospitalized patients with type 2 diabetes mellitus. Diabetes Technol. Ther. 2018, 20, 32–38. [Google Scholar]
- Bally, L.; Thabit, H.; Hartnell, S.; Andereggen, E.; Ruan, Y.; Wilinska, M.E.; Evans, M.L.; Wertli, M.M.; Coll, A.P.; Stettler, C.; et al. Closed-loop insulin delivery for glycemic control in noncritical care. N. Engl. J. Med. 2018, 379, 547–556. [Google Scholar]
- Rubin, D.J.; Golden, S.H.; McDonnell, M.E.; Zhao, H. Predicting readmission risk of patients with diabetes hospitalized for cardiovascular disease: A retrospective cohort study. J. Diabetes Complicat. 2017, 31, 1332–1339. [Google Scholar]
- Kitabchi, A.E.; Umpierrez, G.E.; Miles, J.M.; Fisher, J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009, 32, 1335–1343. [Google Scholar]
- Umpierrez, G.E.; Latif, K.; Stoever, J.; Cuervo, R.; Park, L.; Freire, A.X.; EKitabchi, A. Efficacy of subcutaneous insulin lispro versus continuous intravenous regular insulin for the treatment of patients with diabetic ketoacidosis. Am. J. Med. 2004, 117, 291–296. [Google Scholar]
- Andrade-Castellanos, C.A.; Colunga-Lozano, L.E.; Delgado-Figueroa, N.; Gonzalez-Padilla, D.A. Subcutaneous rapid-acting insulin analogues for diabetic ketoacidosis. Cochrane Database Syst Rev. 2016, 2016, CD011281. [Google Scholar]
- Rosenstock, J.; Ferrannini, E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern With SGLT2 Inhibitors. Diabetes Care 2015, 38, 1638–1642. [Google Scholar]
- Van den Berghe, G.; Wilmer, A.; Hermans, G.; Meersseman, W.; Wouters, P.J.; Milants, I.; Van Wijngaerden, E.; Bobbaers, H.; Bouillon, R. Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 2006, 354, 449–461. [Google Scholar]
ICU Patients | Non-ICU Patients | Pre-OP * | PACU/OR ** | Medical Nutrition Therapy | Steroid Use | |
---|---|---|---|---|---|---|
Practice Changing Trials | 1—Leuven Surgical ICU: intensive glucose targets [38] 2—Glucontrol, VISEP: no benefit in intensive targets [39,41] 3—NICE-SUGAR: intensive targets increase mortality at 90 days [42] 4—Gluco-CABG: a target blood glucose( BG) of 110–140 mg/dL (6.1–7.8 mmol/L) in some cardiac patients may be beneficial [46] | 1—RABBIT-2 Medicine: Target fasting Blood Glucose (BG) < 140 mg/dL (7.8 mmol/L) and random BG < 180 mg/dL (10 mmol/L); recommends the use of the basal/bolus regimen over sliding scale [56] | No RCTs for Pre-Op meds. ADA. | No RCTs, only expert opinion. | No RCTs available. | No RCT is available. |
2—RABBIT-2 Surgery: Target of fasting BG < 140 mg/dL (7.8 mmol/L) and random BG < 180 mg/dL (10 mmol/L); recommends the use of the basal/ bolus regimen over sliding-scale [57] | ||||||
3—Basal Plus trial: recommends the use of the basal-plus correction scale in surgical patients with a higher risk of hypoglycemia [58] | ||||||
Glycemic Target | 1—ADA/AACE: Traget BG:140–180 mg/dL (7.8–10 mmol/L). Cardiac surgery patients: 110–140 mg/dL (6.1–7.8 mmol/L) [19,30] | 1—ADA/AACE: fasting glucose < 140 mg/dL (7.8 mmol/L) and random glucose < 180 mg/dL (10 mmol/L) [19,30] | ADA: Target BG: 80–180 mg/dL (4.4–10 mmol/L) [30] | Check glucose hourly; start treatment if BG > 180 mg/dL (10 mmol/L) [30] | ICU settings: Target BG: 140–180 mg/dL (7.8–10 mmol/L). Non-ICU settings: fasting BG < 140 mg/dL (7.8 mmol/L)& random BG < 180 mg/dL(10 mmol/L) [30] | ICU settings: Target BG:140–180 mg/dL (7.8–10 mmol/L) Non-ICU settings: fasting BG < 140 mg/dL (7.8 mmol/L) and random BG < 180 mg/dL (10 mmol/L) [30] |
2—Endocrine Society: Target BG:140–180 mg/dL (7.8–10 mmol/L). In terminal illness, limited life expectancy BG< 200 mg/dL (11.2 mmol/L) [66] | ||||||
2—Endocrine Society: 140–180 mg/dL (7.8–10 mmol/L). In terminal illness, there is an increased risk of hypoglycemia with limited life expectancy; target < 200 mg/dL (11.2 mmol/L) [66] | ||||||
3—Critical care medicine: Traget BG: 180 mg/dL (10 mmol/L) and treat if BG >150 mg/dL (8.3 mmol/L) [47] |
ICU Patients | Non-ICU Patients | Pre-Operation | Post-Anesthesia Care Unit or Operation Room | Medical Nutrition Therapy | High Dose Steroid Use | ||||
---|---|---|---|---|---|---|---|---|---|
Treatment Options: | Iv insulin infusion protocol or Computeri-zed protocol [30,50,51] | Insulin sensitive: GFR < 45 age > 70 | Usual insulin: | Insulin resistance: BMI > 35, steroid prednisone >20 mg/day | Hold metformin, sulfonylurea, TZD prior surgery. Hold SGLT-2 inh for 3–4 days prior surgery [30] May continue metformin and DPP-IV inh on the day of minimally invasive surgery [14,30] | 1- Surgery <4 h:Start short-acting insulin scale when BG > 180 mg/dL (10 mmol/L) [14] 2-Surgery >4 h, Hemodynamic changes, temp changes: Start IV insulin infusion [14] | 1-Continuous enteral feed: Use Basal insulin (Total Daily dsoe plus 1 unit of insulin for each 10–15 g of carbs in Enteral formula [14] | Critically Ill pts on steroid: IV insulin infusion [30] | |
Poor intake or NPO [58] | Basal insulin (0.1–0.15 units/kg) Plus correction scale | Basal insulin (0.2–0.25 units/kg) Plus correction scale | Basal insulin (0.3 units/kg) plus correction scale | 2—Bolus Enteral Feed: Use 1 unit of regular insulin for each 10–15 g of carbs plus correction scale for each bolus feed [14] | Short/intermediate acting steroid such as daily prednisone: NPH insulin plus correction scale with short acting insulin [30] | ||||
Normal intake [56,57] | Basal insulin (0.1–0.15 units/kg), meal bolus insulin and correction scale | Basal insulin (0.2–0.25 units/kg), meal bolus insulin and correction scale | Basal insulin (0.3 units/kg), meal-bolus insulin and correction scale | Hold short- acting insulin on the day of surgery, use 80% of am dose of glargine insulin on the day of surgery and 50% of insulin 70/30 in am if BG > 120 mg/dL (6.7 mmol/L) and Hold if BG < 120 mg/dL (6.7 mmol/L) | 3-Nocturnal enteral feed:Use NPH insulin at the start of feed [14] | Longer acting steroid; dexamethasone: basal insulin plus correctional scale [30] | |||
On Low doses of insulin [61,62] | Basal insulin (0.1–0.15 units/kg) plusDPP-IV inhs | Basal insulin (0.2–0.25 units/kg) plus DPP-IV inhs | Basal insulin (0.3 units/kg) plus DPP-IV inhs | 4-Parenteral nutrition: Use IV insulin infusion in ICU. In non-ICU: use Regular insulin [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razavi Nematollahi, L.; Omoregie, C. Updates on the Management of Hyperglycemia in Hospitalized Adult Patients. Endocrines 2023, 4, 521-535. https://doi.org/10.3390/endocrines4030037
Razavi Nematollahi L, Omoregie C. Updates on the Management of Hyperglycemia in Hospitalized Adult Patients. Endocrines. 2023; 4(3):521-535. https://doi.org/10.3390/endocrines4030037
Chicago/Turabian StyleRazavi Nematollahi, Laleh, and Caitlin Omoregie. 2023. "Updates on the Management of Hyperglycemia in Hospitalized Adult Patients" Endocrines 4, no. 3: 521-535. https://doi.org/10.3390/endocrines4030037
APA StyleRazavi Nematollahi, L., & Omoregie, C. (2023). Updates on the Management of Hyperglycemia in Hospitalized Adult Patients. Endocrines, 4(3), 521-535. https://doi.org/10.3390/endocrines4030037