Androgenic Steroid Hormones and Endurance Exercise in Athletic Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Study Design
2.3. Session One—Maximal Oxygen Uptake/Body Composition
2.4. Session Two—Prolonged Exercise
2.5. Session Three—24 h Recovery Assessment
2.6. Biochemical Analysis
2.7. Statistical Analysis
3. Results
3.1. Endurance Exercise Responses
3.2. Hormonal Responses
3.3. Plasma Volume
3.4. Correlation Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.G. Androgen production in women. Fertil. Steril. 2002, 77 (Suppl. S4), S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.; Lane, A.R.; Hackney, A.C. Cortisol and testosterone dynamics following exhaustive endurance exercise. Eur. J. Appl. Physiol. 2016, 116, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Daly, W.; Seegers, C.A.; Rubin, D.A.; Dobridge, J.D.; Hackney, A.C. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur. J. Appl. Physiol. 2005, 93, 375–380. [Google Scholar] [CrossRef]
- Nindl, B.C.; Kraemer, W.J.; Deaver, D.R.; Peters, J.L.; Marx, J.O.; Heckman, J.T.; Loomis, G.A. LH secretion and testosterone concentrations are blunted after resistance exercise in men. J. Appl. Physiol. 2001, 91, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Cumming, D.C.; Quigley, M.E.; Yen, S.S.C. Acute suppression of circulating testosterone levels by cortisol in men. J. Clin. Endocrinol. Metab. 1983, 57, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Whirledge, S.; Cidlowski, J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010, 35, 109–125. [Google Scholar] [PubMed]
- Consitt, L.A.; Copeland, J.L.; Tremblay, M.S.; Wang, V.N.; Ahmed, M.; Ciofani, A.; Sasson, Z.; Granton, J.T.; Mak, S. Hormone Responses to Resistance vs. Endurance Exercise in Premenopausal Females. Can. J. Appl. Physiol. 2001, 26, 574–587. [Google Scholar] [CrossRef] [PubMed]
- Consitt, L.A.; Copeland, J.L.; Tremblay, M.S. Endogenous anabolic hormone responses to endurance versus resistance exercise and training in women. Sports Med. 2002, 32, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.T.; Kilduff, L.P.; Finn, C.; Scott, P.; Cook, C. Salivary testosterone responses to a physical and psychological stimulus and subsequent effects on physical performance in healthy adults. Hormones 2015, 15, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; Willett, H.N. Testosterone responses to intensive, prolonged endurance exercise in women. Endocrines 2020, 1, 119–124. [Google Scholar] [CrossRef]
- Häkkinen, K.; Pakarinen, A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int. J. Sports Med. 1995, 16, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Kraemer, W.J.; Gotshalk, L.A.; Marx, J.O.; Volek, J.S.; Bush, J.A.; Häkkinen, K.; Newton, R.U.; Fleck, S.J. Testosterone responses after resistance exercise in women: Influence of regional fat distribution. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 451–465. [Google Scholar] [CrossRef]
- Linnamo, V.; Pakarinen, A.; Komi, P.V.; Kraemer, W.J.; Häkkinen, K. Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J. Strength Cond. Res. 2005, 19, 566–571. [Google Scholar] [CrossRef]
- Bianchi, V.E.; Bresciani, E.; Meanti, R.; Rizzi, L.; Omeljaniuk, R.J.; Torsello, A. The role of androgens in women’s health and wellbeing. Pharmacol. Res. 2021, 171, 105758. [Google Scholar] [CrossRef] [PubMed]
- Enea, C.; Boisseau, N.; Fargeas-Gluck, M.A.; Diaz, V.; Dugué, B. Circulating androgens in women: Exercise-induced changes. Sports Med. 2011, 41, 1–15. [Google Scholar] [CrossRef]
- Gitnux Website. Available online: https://gitnux.org/half-marathon-statistics/ (accessed on 1 March 2024).
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Minahan, C.L.; de Jonge, X.A.K.J.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological considerations for studies in sport and exercise science with women as participants: A working guide for standards of practice for research on women. Sports Med. 2021, 51, 843–861. [Google Scholar] [CrossRef]
- Schmalenberger, K.M.; Tauseef, H.A.; Barone, J.C.; Owens, S.A.; Lieberman, L.; Jarczok, M.N.; Girdler, S.S.; Kiesner, J.; Ditzen, B.; Eisenlohr-Moul, T.A. How to study the menstrual cycle: Practical tools and recommendations. Psychoneuroendocrinology 2021, 123, 104895. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–182. [Google Scholar] [CrossRef]
- Pollock, M.L.; Wilmore, J.H. Exercise in Health and Disease: Evaluation and Prescription for Prevention and Rehabilitation; W.B. Saunders Company: Philadelphia, PA, USA, 1990. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Powers, S.K.; Howley, E.T. Exercise Physiology: Theory and Application to Fitness and Performance, 4th ed.; McGraw Hill: Boston, MA, USA, 2001. [Google Scholar]
- Viru, A.; Viru, M. Cortisol-Essential adaptation hormone in exercise. Int. J. Sports Med. 2004, 25, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Alghannam, A.F.; Jedrzejewski, D.; Tweddle, M.; Gribble, H.; Bilzon, J.L.J.; Betts, J.A. Reliability of time to exhaustion treadmill running as a measure of human endurance capacity. Int. J. Sports Med. 2016, 37, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef]
- Hackney, A.C.; Viru, A. Research methodology: Endocrinologic measurements in exercise science and sports medicine. J. Athl. Train. 2008, 43, 631–639. [Google Scholar] [CrossRef]
- Baker, E.R.; Mathur, R.S.; Kirk, R.F.; Landgrebe, S.C.; Moody, L.O.; Williamson, H.O. Plasma gonadotropins, prolactin, and steroid hormone concentrations in female runners immediately after a long distance run. Fertil. Steril. 1982, 38, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Keizer, H.; Kuipers, H.; de Haan, J.; Beckers, E.; Habets, L. Multiple hormonal responses to physical exercise in eumenorrheic trained and untrained women. Int. J. Sports Med. 1987, 8, S139–S150. [Google Scholar] [CrossRef]
- Kochańska-Dziurowicz, A.; Gawel-Szostek, V.; Gabryś, T.; Kmita, D. Changes in prolactin and testosterone levels induced by acute physical exertion in young female athletes. Hum. Physiol. 2001, 27, 349–352. [Google Scholar] [CrossRef]
- Singh, A.; Papanicolaou, D.A.; Lawrence, L.L.; Howell, E.A.; Chrousos, G.P.; Deuster, P.A. Neuroendocrine responses to running in women after zinc and vitamin E supplementation. Med. Sci. Sports Exerc. 1999, 31, 536–542. [Google Scholar] [CrossRef]
- Bonen, A.; Keizer, H. Pituitary, ovarian, and adrenal hormone responses to marathon running. Int. J. Sports Med. 1987, 8 (Suppl. S3), S161–S167. [Google Scholar] [CrossRef]
- Hale, R.W.; Kosasa, T.; Krieger, J.; Pepper, S. A marathon: The immediate effect on female runners’ luteinizing hormone, follicle-stimulating hormone, prolactin, testosterone, and cortisol levels. Am. J. Obstet. Gynecol. 1983, 146, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Keizer, H.; Janssen, G.M.E.; Menheere, P.; Kranenburg, G. Changes in basal plasma testosterone, cortisol, and dehydroepiandrosterone sulfate in previously untrained males and females preparing for a marathon. Int. J. Sports Med. 1989, 10, S139–S145. [Google Scholar] [CrossRef] [PubMed]
- Cadoux-Hudson, T.A.; Few, J.D.; Imms, F.J. The effect of exercise on the production and clearance of testosterone in well trained young men. Eur. J. Appl. Physiol. 1985, 54, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Widmaier, E.P. Metabolic feedback in mammalian endocrine systems. Horm. Metab. Res. 1992, 24, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.S. The Cambridge Dictionary of Statistics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Duclos, M.; Corcuff, J.B.; Arsac, L.; Gaudry, M.; Rashedi, M.; Roger, P.; Tabarin, A.; Manier, G. Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin. Endocrinol. 1998, 48, 493–501. [Google Scholar] [CrossRef]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef]
Measurement (Unit) | Mean | Standard Deviation |
---|---|---|
Age (y) | 26.5 | 2.4 |
Height (cm) | 169.7 | 6.0 |
Mass (kg) | 60.8 | 3.9 |
Body Fat (%) | 18.4 | 3.7 |
Training (y) | 7.7 | 2.1 |
VO2max (mL/kg/min) | 59.2 | 2.7 |
VO2 at VT (% of VO2max) | 76.5 | 4.2 |
Measure (Unit) | Exercise Time | |||
---|---|---|---|---|
5 min | 30 min | 60 min | Volitional Fatigue | |
HR (bpm) | 162.2 ± 5.8 | 174.6 ± 6.3 | 175.8 ± 10.0 | 179.3± 7.1 * |
VT (%) | 92.7 ± 5.6 | 96.6 ± 5.1 | 97.1 ± 4.9 | 99.8 ± 6.7 * |
Lactate (mM/L) | -- | -- | -- | 5.9 ± 0.6 |
RPE (a.u.) | 11.3 ± 1.9 | 13.9 ± 2.1 | 15.0 ± 1.9 | 16.8 ± 2.5 * |
Hormone (Unit) | Measurement Time | |||
---|---|---|---|---|
Pre-Exercise (Resting) | Volitional Fatigue | 90-min Recovery | 24-h Recovery | |
Cortisol (μg/dL) | 19.5 ± 6.0 | 33.7 ± 5.1 <0.01 | 28.9 ± 6.1 <0.01 | 16.7 ± 5.9 NS |
Total Testosterone (ng/dL) | 16.7 ± 7.1 | 29.9 ± 8.8 <0.01 | 18.9 ± 4.4 NS | 12.5 ± 4.0 <0.06 |
Free Testosterone (pg/mL) | 0.9 ± 0.7 | 1.7 ± 1.9 0.08 | 1.6 ± 1.0 <0.03 | 0.6 ± 0.9 NS |
DHEA (μg/dL) | 210.5 ± 44.3 | 279.0 ± 66.3 <0.01 | 255.0 ± 75.3 <0.06 | 169.1 ± 55.9 0.03 |
DHEA-S (μg/dL) | 123.7 ± 25.1 | 191.1 ± 65.1 <0.01 | 137.6 ± 69.9 0.04 | 88.9 ± 33.0 <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hackney, A.C.; Prado, R.C.R.; Dolan, E. Androgenic Steroid Hormones and Endurance Exercise in Athletic Women. Endocrines 2024, 5, 252-260. https://doi.org/10.3390/endocrines5030018
Hackney AC, Prado RCR, Dolan E. Androgenic Steroid Hormones and Endurance Exercise in Athletic Women. Endocrines. 2024; 5(3):252-260. https://doi.org/10.3390/endocrines5030018
Chicago/Turabian StyleHackney, Anthony C., Raul Cosme Ramos Prado, and Eimear Dolan. 2024. "Androgenic Steroid Hormones and Endurance Exercise in Athletic Women" Endocrines 5, no. 3: 252-260. https://doi.org/10.3390/endocrines5030018
APA StyleHackney, A. C., Prado, R. C. R., & Dolan, E. (2024). Androgenic Steroid Hormones and Endurance Exercise in Athletic Women. Endocrines, 5(3), 252-260. https://doi.org/10.3390/endocrines5030018