Synthesis of Bispidine-Based Prostate-Specific Membrane Antigen-Targeted Conjugate and Initial Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis
2.2.1. Synthesis of Compound 3
2.2.2. Synthesis of Compound 4 (PSMA-Bisp)
2.2.3. Synthesis of Compound Bisp-Alkyne
2.3. Isolation of 64Cu
2.4. Measurement of Radioactivity
2.5. Labeling Experiments
2.6. Thin-Layer Chromatography
2.7. In Vitro Evaluation
2.8. Cell Lines
2.9. Single-Cell ROS and Cu2+ Measurement Using Nanoelectrodes
2.10. Cytotoxicity
3. Results and Discussion
3.1. Labeling Conditions
3.2. Stability
3.3. ROS Level and Cytotoxicity Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Petrov, S.A.; Zyk, N.Y.; Machulkin, A.E.; Beloglazkina, E.K.; Majouga, A.G. PSMA-Targeted Low-Molecular Double Conjugates for Diagnostics and Therapy. Eur. J. Med. Chem. 2021, 225, 113752. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Yousefnia, H.; Zolghadri, S.; Bahrami-Samani, A.; Naderi, M.; Jalilian, A.R.; Geramifar, P.; Beiki, D. Preparation and Biodistribution Assessment of 68Ga-DKFZ-PSMA-617 for PET Prostate Cancer Imaging. Nucl. Sci. Tech. 2016, 27, 142. [Google Scholar] [CrossRef]
- Giesel, F.L.; Cardinale, J.; Schäfer, M.; Neels, O.; Benešová, M.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. 18F-Labelled PSMA-1007 Shows Similarity in Structure, Biodistribution and Tumour Uptake to the Theragnostic Compound PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1929–1930. [Google Scholar] [CrossRef]
- Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O.C.; Eisenhut, M.; Kübler, W.; Holland-Letz, T.; Giesel, F.L.; et al. The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. J. Nucl. Med. 2015, 56, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Hasnowo, L.A.; Larkina, M.S.; Plotnikov, E.; Bodenko, V.; Yuldasheva, F.; Stasyuk, E.; Petrov, S.A.; Zyk, N.Y.; Machulkin, A.E.; Vorozhtsov, N.I.; et al. Synthesis, 123I-Radiolabeling Optimization, and Initial Preclinical Evaluation of Novel Urea-Based PSMA Inhibitors with a Tributylstannyl Prosthetic Group in Their Structures. Int. J. Mol. Sci. 2023, 24, 12206. [Google Scholar] [CrossRef]
- Krasnovskaya, O.O.; Abramchuck, D.; Erofeev, A.; Gorelkin, P.; Kuznetsov, A.; Shemukhin, A.; Beloglazkina, E.K. Recent Advances in 64Cu/67Cu-Based Radiopharmaceuticals. Int. J. Mol. Sci. 2023, 24, 9154. [Google Scholar] [CrossRef]
- Hussain, M.; Qaim, S.M.; Spahn, I.; Aslam, M.N.; Neumaier, B. Copper Radionuclides for Theranostic Applications: Towards Standardisation of Their Nuclear Data. A Mini-Review. Front. Chem. 2023, 11, 1270351. [Google Scholar] [CrossRef]
- Hruby, M.; Martínez, I.I.S.; Stephan, H.; Pouckova, P.; Benes, J.; Stepanek, P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers 2021, 13, 3969. [Google Scholar] [CrossRef]
- Hao, G.; Singh, A.; Oz, O.; Sun, X. Recent Advances in Copper Radiopharmaceuticals. Curr. Radiopharm. 2011, 4, 109–121. [Google Scholar] [CrossRef]
- Ding, X.; Xie, H.; Kang, Y.J. The Significance of Copper Chelators in Clinical and Experimental Application. J. Nutr. Biochem. 2011, 22, 301–310. [Google Scholar] [CrossRef]
- Holland, J.P.; Ferdani, R.; Anderson, C.J.; Lewis, J.S. Copper-64 Radiopharmaceuticals for Oncologic Imaging. PET Clin. 2009, 4, 49–67. [Google Scholar] [CrossRef]
- Southcott, L.; Wang, X.; Choudhary, N.; Wharton, L.; Patrick, B.O.; Yang, H.; Zarschler, K.; Kubeil, M.; Stephan, H.; de Jaraquemada-Peláez, M.G.; et al. H2pyhox—Octadentate Bis(Pyridyloxine). Inorg. Chem. 2021, 60, 12186–12196. [Google Scholar] [CrossRef]
- Kubeil, M.; Neuber, C.; Starke, M.; Arndt, C.; Rodrigues Loureiro, L.; Hoffmann, L.; Feldmann, A.; Bachmann, M.; Pietzsch, J.; Comba, P.; et al. 64Cu Tumor Labeling with Hexadentate Picolinic Acid-Based Bispidine Immunoconjugates. Chem.—A Eur. J. 2024, 30, e202400366. [Google Scholar] [CrossRef]
- Kopp, I.; Cieslik, P.; Anger, K.; Josephy, T.; Neupert, L.; Velmurugan, G.; Gast, M.; Wadepohl, H.; Brühlmann, S.A.; Walther, M.; et al. Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions. Inorg. Chem. 2023, 62, 20754–20768. [Google Scholar] [CrossRef]
- Kovács, A. Metal-Ligand Bonding in Bispidine Chelate Complexes for Radiopharmaceutical Applications. Struct. Chem. 2023, 34, 5–15. [Google Scholar] [CrossRef]
- Cieslik, P.; Kubeil, M.; Zarschler, K.; Ullrich, M.; Brandt, F.; Anger, K.; Wadepohl, H.; Kopka, K.; Bachmann, M.; Pietzsch, J.; et al. Toward Personalized Medicine: One Chelator for Imaging and Therapy with Lutetium-177 and Actinium-225. J. Am. Chem. Soc. 2022, 144, 21555–21567. [Google Scholar] [CrossRef]
- Comba, P.; Starke, M.; Wadepohl, H. Optimization of Hexadentate Bispidine Ligands as Chelators for 64CuII PET Imaging. Chempluschem 2018, 83, 597–604. [Google Scholar] [CrossRef]
- Medved’ko, A.V.; Egorova, B.V.; Komarova, A.A.; Rakhimov, R.D.; Krut’ko, D.P.; Kalmykov, S.N.; Vatsadze, S.Z. Copper–Bispidine Complexes: Synthesis and Complex Stability Study. ACS Omega 2016, 1, 854–867. [Google Scholar] [CrossRef]
- Roux, A.; Gillet, R.; Huclier-Markai, S.; Ehret-Sabatier, L.; Charbonnière, L.J.; Nonat, A.M. Bifunctional Bispidine Derivatives for Copper-64 Labelling and Positron Emission Tomography. Org. Biomol. Chem. 2017, 15, 1475–1483. [Google Scholar] [CrossRef]
- Machulkin, A.E.; Shafikov, R.R.; Uspenskaya, A.A.; Petrov, S.A.; Ber, A.P.; Skvortsov, D.A.; Nimenko, E.A.; Zyk, N.U.; Smirnova, G.B.; Pokrovsky, V.S.; et al. Synthesis and Biological Evaluation of PSMA Ligands with Aromatic Residues and Fluorescent Conjugates Based on Them. J. Med. Chem. 2021, 64, 4532–4552. [Google Scholar] [CrossRef] [PubMed]
- Tietze, L.F.; Eicher, T.; Diederichsen, U.; Speicher, A.; Schützenmeister, N. Reactions and Syntheses: In the Organic Chemistry Laboratory; Wiley-VCH: Hoboken, NJ, USA, 2015; ISBN 978-3-527-33814-6. [Google Scholar]
- Zyk, N.Y.; Ber, A.P.; Nimenko, E.A.; Shafikov, R.R.; Evteev, S.A.; Petrov, S.A.; Uspenskaya, A.A.; Dashkova, N.S.; Ivanenkov, Y.A.; Skvortsov, D.A.; et al. Synthesis and Initial in Vitro Evaluation of PSMA-Targeting Ligands with a Modified Aromatic Moiety at the Lysine ε-Nitrogen Atom. Bioorg Med. Chem. Lett. 2022, 71, 128840. [Google Scholar] [CrossRef] [PubMed]
- Machulkin, A.E.; Petrov, S.A.; Bodenko, V.; Larkina, M.S.; Plotnikov, E.; Yuldasheva, F.; Tretyakova, M.; Bezverkhniaia, E.; Zyk, N.Y.; Stasyuk, E.; et al. Synthesis and Preclinical Evaluation of Urea-Based Prostate-Specific Membrane Antigen-Targeted Conjugates Labeled with 177Lu. ACS Pharmacol. Transl. Sci. 2024, 7, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, M.A.; Medved’ko, A.V.; Minyaev, M.E.; Vatsadze, S.Z. Synthesis of N,N′-Unsymmetrical 9-Amino-5,7-Dimethyl-Bispidines. J. Org. Chem. 2023, 88, 7272–7280. [Google Scholar] [CrossRef]
- Machulkin, A.E.; Nimenko, E.A.; Zyk, N.U.; Uspenskaia, A.A.; Smirnova, G.B.; Khan, I.I.; Pokrovsky, V.S.; Vaneev, A.N.; Timoshenko, R.V.; Mamed-Nabizade, V.V.; et al. Synthesis and Preclinical Evaluation of Small-Molecule Prostate-Specific Membrane Antigen-Targeted Abiraterone Conjugate. Molecules 2022, 27, 8795. [Google Scholar] [CrossRef]
- Zyk, N.Y.; Garanina, A.S.; Plotnikova, E.A.; Ber, A.P.; Nimenko, E.A.; Dashkova, N.S.; Uspenskaia, A.A.; Shafikov, R.R.; Skvortsov, D.A.; Petrov, S.A.; et al. Synthesis of Prostate-Specific Membrane Antigen-Targeted Bimodal Conjugates of Cytotoxic Agents and Antiandrogens and Their Comparative Assessment with Monoconjugates. Int. J. Mol. Sci. 2023, 24, 11327. [Google Scholar] [CrossRef]
- Voráčová, I.; Vaněk, J.; Pasulka, J.; Střelcová, Z.; Lubal, P.; Hermann, P. Dissociation Kinetics Study of Copper(II) Complexes of DO3A, DOTA and Its Monosubstituted Derivatives. Polyhedron 2013, 61, 99–104. [Google Scholar] [CrossRef]
- Joyner, J.C.; Cowan, J.A. Target-Directed Catalytic Metallodrugs. Braz. J. Med. Biol. Res. 2013, 46, 465–485. [Google Scholar] [CrossRef]
- Lilly Thankamony, A.S.; Wittmann, J.J.; Kaushik, M.; Corzilius, B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Modern Solid-State NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102, 120–195. [Google Scholar] [CrossRef]
- Rinne, S.S.; Leitao, C.D.; Mitran, B.; Bass, T.Z.; Andersson, K.G.; Tolmachev, V.; Ståhl, S.; Löfblom, J.; Orlova, A. Optimization of HER3 Expression Imaging Using Affibody Molecules: Influence of Chelator for Labeling with Indium-111. Sci. Rep. 2019, 9, 655. [Google Scholar] [CrossRef]
- Rinne, S.S.; Dahlsson Leitao, C.; Gentry, J.; Mitran, B.; Abouzayed, A.; Tolmachev, V.; Ståhl, S.; Löfblom, J.; Orlova, A. Increase in Negative Charge of 68Ga/Chelator Complex Reduces Unspecific Hepatic Uptake but Does Not Improve Imaging Properties of HER3-Targeting Affibody Molecules. Sci. Rep. 2019, 9, 17710. [Google Scholar] [CrossRef] [PubMed]
- Mozhaitsev, E.S.; Ponomarev, K.Y.; Patrusheva, O.S.; Medvedko, A.V.; Dalinger, A.I.; Rogachev, A.D.; Komarova, N.I.; Korchagina, D.V.; Suslov, E.V.; Volcho, K.P.; et al. Conjugates of Bispidine and Monoterpenoids as Ligands of Metal Complex Catalysts for the Henry Reaction. Russ. J. Org. Chem. 2020, 56, 1969–1981. [Google Scholar] [CrossRef]
- Cui, C.; Hanyu, M.; Hatori, A.; Zhang, Y.; Xie, L.; Ohya, T.; Fukada, M.; Suzuki, H.; Nagatsu, K.; Jiang, C.; et al. Synthesis and Evaluation of [64 Cu]PSMA-617 Targeted for Prostate-Specific Membrane Antigen. Am. J. Nucl. Med. Mol. Imaging 2017, 7, 40. [Google Scholar]
- Vaneev, A.N.; Gorelkin, P.V.; Garanina, A.S.; Lopatukhina, H.V.; Vodopyanov, S.S.; Alova, A.V.; Ryabaya, O.O.; Akasov, R.A.; Zhang, Y.; Novak, P.; et al. In Vitro and In Vivo Electrochemical Measurement of Reactive Oxygen Species After Treatment with Anticancer Drugs. Anal. Chem. 2020, 92, 8010–8014. [Google Scholar] [CrossRef]
- Timoshenko, R.V.; Gorelkin, P.V.; Vaneev, A.N.; Krasnovskaya, O.O.; Akasov, R.A.; Garanina, A.S.; Khochenkov, D.A.; Iakimova, T.M.; Klyachko, N.L.; Abakumova, T.O.; et al. Electrochemical Nanopipette Sensor for In Vitro/In Vivo Detection of Cu 2+ Ions. Anal. Chem. 2024, 96, 127–136. [Google Scholar] [CrossRef]
c(L), µM | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
---|---|---|---|---|---|---|---|
[64Cu]Cu-Bisp1, % | - | 19 | 38 | 76 | 96 | 97 | 98 |
[64Cu]Cu-Bisp-alkyne, % | 17 | 31 | 71 | 100 | 100 | 100 | - |
[64Cu]Cu-PSMA-Bisp, % | - | - | 23 | 42 | - | 99 | 99 |
% [64Cu]Cu-PSMA-Bisp | Mg2+ 10 mM | Ca2+ 50 mM | Zn2+ 1 mM | Cu2+ 1 mM | Fe3+ 1mM |
---|---|---|---|---|---|
γ-spectrometry | 98 ± 1 | 98 ± 1 | 93 ± 1 | 100 ± 1 | 100 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machulkin, A.E.; Petrov, S.A.; Kraynova, M.D.; Garanina, A.S.; Egorova, B.V.; Timoshenko, R.V.; Vaneev, A.N.; Erofeev, A.S.; Priselkova, A.B.; Kalinin, M.A.; et al. Synthesis of Bispidine-Based Prostate-Specific Membrane Antigen-Targeted Conjugate and Initial Investigations. Organics 2025, 6, 7. https://doi.org/10.3390/org6010007
Machulkin AE, Petrov SA, Kraynova MD, Garanina AS, Egorova BV, Timoshenko RV, Vaneev AN, Erofeev AS, Priselkova AB, Kalinin MA, et al. Synthesis of Bispidine-Based Prostate-Specific Membrane Antigen-Targeted Conjugate and Initial Investigations. Organics. 2025; 6(1):7. https://doi.org/10.3390/org6010007
Chicago/Turabian StyleMachulkin, Aleksei E., Stanislav A. Petrov, Maria D. Kraynova, Anastasiia S. Garanina, Bayirta V. Egorova, Roman V. Timoshenko, Alexander N. Vaneev, Alexander S. Erofeev, Anna B. Priselkova, Mikhail A. Kalinin, and et al. 2025. "Synthesis of Bispidine-Based Prostate-Specific Membrane Antigen-Targeted Conjugate and Initial Investigations" Organics 6, no. 1: 7. https://doi.org/10.3390/org6010007
APA StyleMachulkin, A. E., Petrov, S. A., Kraynova, M. D., Garanina, A. S., Egorova, B. V., Timoshenko, R. V., Vaneev, A. N., Erofeev, A. S., Priselkova, A. B., Kalinin, M. A., Medved′ko, A. V., Kalmykov, S. N., Beloglazkina, E. K., & Vatsadze, S. Z. (2025). Synthesis of Bispidine-Based Prostate-Specific Membrane Antigen-Targeted Conjugate and Initial Investigations. Organics, 6(1), 7. https://doi.org/10.3390/org6010007