Shoulder Bone Segmentation with DeepLab and U-Net
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zero Echo Time (ZTE) MRI Data
2.2. Opportunistic CT Data for Comparison
2.3. Annotation/Manual Segmentation
2.4. Deep Learning Segmentation Models
2.4.1. MATLAB Code
% data directories imageDir = “directory for pre-processed MRI images” labelDir = “directory for segmented MRI images” % create image and label datastores imds=imageDatastore (imageDir) pxds=imageDatastore(labelDir) % combined training datastore dsTrain=combine (imds, pxds) % create deep network imageSize=[256 256] encoderDepth=5; classNames=[“background” , “humerus”, “remaining”]; numClasses=3; % one for each of the segmentation % create U-Net network = unetLayers (imageSize, numClasses, ‘EncoderDepth’, encoderDepth) % alternatively, create Deeplab (but not both in the same program) network = deeplabv3plusLayers(imageSize,numClasses, ‘resnet18’); % training options train_options=trainingOptions (‘adam’ ... ‘LearnRateDropFactor’,0.1, ... ‘LearnRateDropPeriod’, 3, ... ‘Shuffle’, ‘every-epoch’, ... ‘MaxEpochs’, 120, ... ‘MiniBatchSize’, 8); ... % start training Segmentation_Network = trainNetwork ( dsTrain, network, train_options ) %%% inference after training %%% segmented_image = semanticseg( “input MRI image”, Segmentation_Network )
2.5. Inference Accuracy
2.6. Clinically Applicable DL Segmentation Workflow
2.7. Statistics
3. Results
3.1. Training
3.2. Testing
3.3. Comparison vs. CT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakshi, N.K.; Cibulas, G.A.; Sekiya, J.K.; Bedi, A. A Clinical Comparison of Linear- and Surface Area-Based Methods of Measuring Glenoid Bone Loss. Am. J. Sports Med. 2018, 46, 2472–2477. [Google Scholar] [CrossRef]
- Mahylis, J.M.; Entezari, V.; Jun, B.J.; Iannotti, J.P.; Ricchetti, E.T. Imaging of the B2 Glenoid: An Assessment of Glenoid Wear. J. Shoulder Elb. Arthroplast. 2019, 3, 2471549219861811. [Google Scholar] [CrossRef]
- Bizzotto, N.; Tami, I.; Santucci, A.; Adani, R.; Poggi, P.; Romani, D.; Carpeggiani, G.; Ferraro, F.; Festa, S.; Magnan, B. 3D Printed replica of articular fractures for surgical planning and patient consent: A two years multi-centric experience. 3d Print. Med. 2015, 2, 2. [Google Scholar] [CrossRef]
- Jehan, S.; Akhi Baig, N.M.; Tavitian, J. Treatment of Shoulder Dislocation with Greater Tuberosity and Glenoid Fractures. J. Coll. Physicians Surg. Pak. 2016, 26, 997–999. [Google Scholar]
- Goetti, P.; Becce, F.; Terrier, A.; Farron, A. Three-dimensional surgical planning, patient-specific instrumentation and intraoperative navigation in shoulder arthroplasty. Rev. Medicale Suisse 2019, 15, 2299–2302. [Google Scholar] [CrossRef]
- Moroder, P.; Resch, H.; Schnaitmann, S.; Hoffelner, T.; Tauber, M. The importance of CT for the pre-operative surgical planning in recurrent anterior shoulder instability. Arch. Orthop. Trauma. Surg. 2013, 133, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Macias-Hernandez, S.I.; Morones-Alba, J.D.; Miranda-Duarte, A.; Coronado-Zarco, R.; Soria-Bastida, M.L.A.; Nava-Bringas, T.; Cruz-Medina, E.; Olascoaga-Gomez, A.; Tallabs-Almazan, L.V.; Palencia, C. Glenohumeral osteoarthritis: Overview, therapy, and rehabilitation. Disabil. Rehabil. 2017, 39, 1674–1682. [Google Scholar] [CrossRef]
- Jun, B.J.; Ricchetti, E.T.; Haladik, J.; Bey, M.J.; Patterson, T.E.; Subhas, N.; Li, Z.M.; Iannotti, J.P. Validation of a 3D CT imaging method for quantifying implant migration following anatomic total shoulder arthroplasty. J. Orthop. Res. 2022, 40, 1270–1280. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, A.B.; Hodler, J. Correlation of MR imaging, CT arthrography, and arthroscopy of the shoulder. Bull. Hosp. Jt. Dis. 1996, 54, 146–152. [Google Scholar]
- Kuhlman, J.E.; Fishman, E.K.; Ney, D.R.; Magid, D. Complex shoulder trauma: Three-dimensional CT imaging. Orthopedics 1988, 11, 1561–1563. [Google Scholar] [CrossRef]
- Bae, W.C.; Biswas, R.; Chen, K.; Chang, E.Y.; Chung, C.B. UTE MRI of the Osteochondral Junction. Curr. Radiol. Rep. 2014, 2, 35. [Google Scholar] [CrossRef]
- Geiger, D.; Bae, W.C.; Statum, S.; Du, J.; Chung, C.B. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (muCT) evaluation of the temporomandibular joint (TMJ) condylar morphology. Skelet. Radiol. 2014, 43, 19–25. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Moazamian, D.; Ma, Y.; Jang, H.; Jerban, S.; Du, J.; Chung, C.B. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skelet. Radiol. 2023, 52, 2149–2157. [Google Scholar] [CrossRef]
- Bharadwaj, U.U.; Coy, A.; Motamedi, D.; Sun, D.; Joseph, G.B.; Krug, R.; Link, T.M. CT-like MRI: A qualitative assessment of ZTE sequences for knee osseous abnormalities. Skelet. Radiol. 2022, 51, 1585–1594. [Google Scholar] [CrossRef]
- Eley, K.A.; Delso, G. Automated 3D MRI rendering of the craniofacial skeleton: Using ZTE to drive the segmentation of black bone and FIESTA-C images. Neuroradiology 2021, 63, 91–98. [Google Scholar] [CrossRef]
- Jang, H.; Carl, M.; Ma, Y.; Searleman, A.C.; Jerban, S.; Chang, E.Y.; Corey-Bloom, J.; Du, J. Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: A feasibility study. Quant. Imaging Med. Surg. 2020, 10, 895–906. [Google Scholar] [CrossRef]
- Breighner, R.E.; Endo, Y.; Konin, G.P.; Gulotta, L.V.; Koff, M.F.; Potter, H.G. Technical Developments: Zero Echo Time Imaging of the Shoulder: Enhanced Osseous Detail by Using MR Imaging. Radiology 2018, 286, 960–966. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Biratu, E.S.; Schwenker, F.; Debelee, T.G.; Kebede, S.R.; Negera, W.G.; Molla, H.T. Enhanced Region Growing for Brain Tumor MR Image Segmentation. J. Imaging 2021, 7, 22. [Google Scholar] [CrossRef]
- Spinczyk, D.; Krason, A. Automatic liver segmentation in computed tomography using general-purpose shape modeling methods. Biomed. Eng. Online 2018, 17, 65. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Rrecognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decorder with atrous separable convolution for semantic image segmentation. arXiv 2018, 1802, 02611. [Google Scholar]
- Liu, J.; Sun, X.; Li, R.; Peng, Y. Recognition of Cervical Precancerous Lesions Based on Probability Distribution Feature Guidance. Curr. Med. Imaging 2022, 18, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Shia, W.C.; Hsu, F.R.; Dai, S.T.; Guo, S.L.; Chen, D.R. Semantic Segmentation of the Malignant Breast Imaging Reporting and Data System Lexicon on Breast Ultrasound Images by Using DeepLab v3. Sensors 2022, 22, 5352. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural network. Comput. Methods Programs Biomed. 2021, 207, 106210. [Google Scholar] [CrossRef]
- Cantarelli Rodrigues, T.; Deniz, C.M.; Alaia, E.F.; Gorelik, N.; Babb, J.S.; Dublin, J.; Gyftopoulos, S. Three-dimensional MRI Bone Models of the Glenohumeral Joint Using Deep Learning: Evaluation of Normal Anatomy and Glenoid Bone Loss. Radiol. Artif. Intell. 2020, 2, e190116. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y. Convolutional neural network for automatically segmenting magnetic resonance images of the shoulder joint. Comput. Methods Programs Biomed. 2021, 200, 105862. [Google Scholar] [CrossRef]
- Mu, X.; Cui, Y.; Bian, R.; Long, L.; Zhang, D.; Wang, H.; Shen, Y.; Wu, J.; Zou, G. In-depth learning of automatic segmentation of shoulder joint magnetic resonance images based on convolutional neural networks. Comput. Methods Programs Biomed. 2021, 211, 106325. [Google Scholar] [CrossRef] [PubMed]
- Conze, P.H.; Brochard, S.; Burdin, V.; Sheehan, F.T.; Pons, C. Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders. Comput. Med. Imaging Graph. 2020, 83, 101733. [Google Scholar] [CrossRef]
- Khan, S.H.; Khan, A.; Lee, Y.S.; Hassan, M.; Jeong, W.K. Segmentation of shoulder muscle MRI using a new region and edge based deep auto-encoder. Multimed. Tools Appl. 2022, 82, 14963–14984. [Google Scholar] [CrossRef]
- Wakamatsu, Y.; Namiya, N.; Zhou, X.F.; Kato, H.; Hara, T.; Fujita, H. Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net. IEEE Access 2021, 9, 155555–155563. [Google Scholar] [CrossRef]
- Ortiz-Posadas, M.R.; Benitez-Graniel, M.A.; Pimentel-Aguilar, A.B. PACS: Reengineering workflow in the Imaging Department of a National Health Institute in Mexico. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2007, 2007, 3585–3588. [Google Scholar] [CrossRef] [PubMed]
- Hagland, M. Reshaping radiology: Change management and workflow optimization give PACS new punch. Healthc. Inform. 2004, 21, 24–26, 28. [Google Scholar] [PubMed]
- Fillicelli, T. Future of PACS: Advanced integration with RIS and workflow management. Radiol. Manag. 2001, 23, 12–13. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-X.; Zhang, J.; Che, X.; Li, Y. Road information detection method based on deep learning. J. Phys Conf. Ser. 2021, 1827, 012181. [Google Scholar] [CrossRef]
- Dice, L. Measure of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Eelbode, T.; Bertels, J.; Berman, M.; Vandermeulen, D.; Maes, F.; Bisschops, R.; Blaschko, M.B. Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index. IEEE Trans. Med. Imaging 2020, 39, 3679–3690. [Google Scholar] [CrossRef] [PubMed]
- Shreffler, J.; Huecker, M.R. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Park, I.; Oh, M.J.; Shin, S.J. Effects of Glenoid and Humeral Bone Defects on Recurrent Anterior Instability of the Shoulder. Clin. Orthop. Surg. 2020, 12, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Abboud, J.A.; Bateman, D.K.; Barlow, J. Glenoid Dysplasia. J. Am. Acad. Orthop. Surg. 2016, 24, 327–336. [Google Scholar] [CrossRef]
- Lansdown, D.A.; Cvetanovich, G.L.; Verma, N.N.; Cole, B.J.; Bach, B.R.; Nicholson, G.; Romeo, A.; Dawe, R.; Yanke, A.B. Automated 3-Dimensional Magnetic Resonance Imaging Allows for Accurate Evaluation of Glenoid Bone Loss Compared With 3-Dimensional Computed Tomography. Arthroscopy 2019, 35, 734–740. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Fan, S.; He, K.; Li, C. Automatic Thresholding of Micro-CT Trabecular Bone Images. In Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; pp. 23–27. [Google Scholar]
- Burghardt, A.J.; Kazakia, G.J.; Majumdar, S. A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Ann. Biomed. Eng. 2007, 35, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Buie, H.R.; Campbell, G.M.; Klinck, R.J.; MacNeil, J.A.; Boyd, S.K. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 2007, 41, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Marin, R.; Chang, V. Impact of transfer learning for human sperm segmentation using deep learning. Comput. Biol. Med. 2021, 136, 104687. [Google Scholar] [CrossRef] [PubMed]
- Alentorn-Geli, E.; Wanderman, N.R.; Assenmacher, A.T.; Cofield, R.H.; Sanchez-Sotelo, J.; Sperling, J.W. Reverse shoulder arthroplasty for patients with glenohumeral osteoarthritis secondary to glenoid dysplasia. Acta Orthop. Belg. 2019, 85, 274–282. [Google Scholar]
- Inui, H.; Nobuhara, K. Glenoid osteotomy for atraumatic posteroinferior shoulder instability associated with glenoid dysplasia. Bone Jt. J. 2018, 100-B, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Sewell, M.D.; Al-Hadithy, N.; Higgs, D.; Bayley, I.; Falworth, M.; Lambert, S. Complex shoulder arthroplasty in patients with skeletal dysplasia can decrease pain and improve function. J. Shoulder Elb. Surg. 2014, 23, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Seagger, R.M.; Loveridge, J.; Crowther, M.A. Beware of glenoid dysplasia mimicking bone trauma in the injured shoulder. Int. J. Shoulder Surg. 2009, 3, 37–40. [Google Scholar] [CrossRef]
Dice HH | Dice Other | Sens HH | Sens Other | Spec HH | Spec Other | ||
---|---|---|---|---|---|---|---|
U-Net | Mean | 0.876 | 0.940 | 0.910 | 0.987 | 0.995 | 0.883 |
SD | 0.043 | 0.031 | 0.061 | 0.013 | 0.003 | 0.070 | |
N | 13 | 13 | 13 | 13 | 13 | 13 | |
DeepLab | Mean | 0.811 | 0.949 | 0.715 | 0.992 | 0.999 | 0.903 |
SD | 0.088 | 0.030 | 0.132 | 0.015 | 0.001 | 0.055 | |
N | 13 | 13 | 13 | 13 | 13 | 13 | |
p-value | 0.027 | 0.467 | <0.001 | 0.426 | <0.001 | 0.424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carl, M.; Lall, K.; Pai, D.; Chang, E.Y.; Statum, S.; Brau, A.; Chung, C.B.; Fung, M.; Bae, W.C. Shoulder Bone Segmentation with DeepLab and U-Net. Osteology 2024, 4, 98-110. https://doi.org/10.3390/osteology4020008
Carl M, Lall K, Pai D, Chang EY, Statum S, Brau A, Chung CB, Fung M, Bae WC. Shoulder Bone Segmentation with DeepLab and U-Net. Osteology. 2024; 4(2):98-110. https://doi.org/10.3390/osteology4020008
Chicago/Turabian StyleCarl, Michael, Kaustubh Lall, Darren Pai, Eric Y. Chang, Sheronda Statum, Anja Brau, Christine B. Chung, Maggie Fung, and Won C. Bae. 2024. "Shoulder Bone Segmentation with DeepLab and U-Net" Osteology 4, no. 2: 98-110. https://doi.org/10.3390/osteology4020008
APA StyleCarl, M., Lall, K., Pai, D., Chang, E. Y., Statum, S., Brau, A., Chung, C. B., Fung, M., & Bae, W. C. (2024). Shoulder Bone Segmentation with DeepLab and U-Net. Osteology, 4(2), 98-110. https://doi.org/10.3390/osteology4020008