Process Intensification of Dichlorodiphenyltrichloroethane Detection Methods for Determining Trace Concentrations in Soils
Abstract
:1. Introduction
2. Methods and Materials
2.1. Soil Sampling
2.2. Grid Soil Sampling
2.3. Soil Samples Preparation
2.4. Conventional and Intensified Extraction Steps
2.4.1. Homogenized Extraction (Conventional)
2.4.2. Ultrasonic Bath Extraction (Conventional)
2.4.3. Ultrasonic Probe Extraction (Intensified)
2.5. Filtration
2.6. Concentration Step
2.6.1. Kuderna-Danish Concentration
2.6.2. Rotary Evaporator Concentration
2.7. Florisil Clean-Up Step
2.8. Gas Chromatography–Mass Spectrometry (GC/MS) Analysis
2.9. Replication and Statistical Analysis
3. Results and Discussion
3.1. Soil Characterization
3.2. Process Intensification on Extraction Step
3.3. Process Intensification on Concentration Step
3.4. Process Intensification on Clean-Up Step
3.5. Grid Soil Sampling Results
3.6. Residual DDTs in Sampled Sites Determined by the Intensified Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, Q.Q.; Loganath, A.; Chong, S.Y.; Tan, J.; Obbard, J.P. Persistent organic pollutants and adverse health effects in humans. J. Toxicol. Environ. Health Part. A 2006, 69, 1987–2005. [Google Scholar] [PubMed]
- Rogan, W.J.; Chen, A. Health risks and benefits of bis (4-chlorophenyl)-1, 1, 1-trichloroethane (DDT). Lancet 2005, 366, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Crowe, A.S.; Smith, J.E. Distribution and persistence of DDT in soil at a sand dune-marsh environment: Point Pelee, Ontario, Canada. Can. J. Soil Sci. 2007, 87, 315–327. [Google Scholar] [CrossRef]
- Persistent Organic Pollutants (POPs) Fact Sheet Series: Dichlorodiphenyltrichloroethane (DDT). Available online: https://www.aadnc-aandc.gc.ca/eng/1316102914633/1316103004743 (accessed on 19 May 2020).
- Harris, M.; Wilson, L.; Elliott, J.; Bishop, C.; Tomlin, A.; Henning, K. Transfer of DDT and metabolites from fruit orchard soils to American robins (Turdus migratorius) twenty years after agricultural use of DDT in Canada. Arch. Environ. Contam. Toxicol. 2000, 39, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.R.; Shah, J.; Khawaja, M.A.; Gul, K. DDT residue in soil and water in and around abandoned DDT manufacturing factory. Environ. Monit. Assess. 2009, 155, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sheng, J.; Gong, P.; Xue, Y.; Yao, T.; Jones, K.C. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling. Environ. Pollut. 2012, 170, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Don Waite, P.B.; Quinnett-Abbott, L.; Ripley, B.D. Residues of DDT and other selected organochlorine pesticides in soils from Saskatchewan, Canada (1999). Can. J. Soil Sci. 2005, 85, 265–271. [Google Scholar] [CrossRef]
- Wang, W.; Meng, B.; Lu, X.; Liu, Y.; Tao, S. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: A comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal. Chim. Acta 2007, 602, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Tor, A.; Aydin, M.E.; Özcan, S. Ultrasonic solvent extraction of organochlorine pesticides from soil. Anal. Chim. Acta 2006, 559, 173–180. [Google Scholar] [CrossRef]
- Samuel, T.; Pillai, M. The effect of temperature and solar radiations on volatilisation, mineralisation and degradation of [14C]-DDT in soil. Environ. Pollut. 1989, 57, 63–77. [Google Scholar] [CrossRef]
- Thangavadivel, K.; Megharaj, M.; Smart, R.S.C.; Lesniewski, P.J.; Bates, D.; Naidu, R. Ultrasonic enhanced desorption of DDT from contaminated soils. Water. Air. Soil Pollut. 2011, 217, 115–125. [Google Scholar] [CrossRef]
- Wollenhaupt, N.; Wolkowski, R. Grid soil sampling. Better Crops 1994, 78, 6–9. [Google Scholar]
- Mauri, R.; Shinnar, R.; d’Amore, M.; Giordano, P.; Volpe, A. Solvent extraction of chromium and cadmium from contaminated soils. AIChE J. 2001, 47, 509–512. [Google Scholar] [CrossRef]
- Baskar, G.; Kalavathy, G.; Aiswarya, R.; Selvakumari, I.A. Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In Advances in Eco-Fuels for a Sustainable Environment; Woodhead Publishing: Cambridge, UK, 2019; pp. 187–210. [Google Scholar]
- Zubairi, S.I.; Sarmidi, M.R.; Aziz, R.A. A preliminary study of rotenone exhaustive extraction kinetic from Derris elliptica dried roots using normal soaking extraction (NSE) method. Adv. Environ. Biol. 2014, 8, 910–916. [Google Scholar]
- Mitra, S.; Patnaik, P.; Kebbekus, B.B. Environmental Chemical Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 0-429-85702-0. [Google Scholar]
- US EPA Method 3620C: Florisil Cleanup. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3620c-florisil-cleanup (accessed on 8 June 2020).
- US EPA Method 8270D: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry. Available online: https://19january2017snapshot.epa.gov/hw-sw846/sw-846-test-method-8270d-semivolatile-organic-compounds-gas-chromatographymass-spectrometry_.html (accessed on 8 June 2020).
- US EPA Method 8081B: Organochlorine Pesticides by Gas Chromatography. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-8081b-organochlorine-pesticides-gas-chromatography (accessed on 8 June 2020).
- Raina, R.; Hall, P. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples. Anal. Chem. Insights 2008, 3, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Ambruster, D.; Pry, T. Limit of blank, limit of detection and limit of quantification. Clin. Biochem. Rev. 2008, 29, 49–52. [Google Scholar]
- Aislabie, J.; Richards, N.; Boul, H. Microbial degradation of DDT and its residues—A review. N. Z. J. Agric. Res. 1997, 40, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Pan, L.; Zhan, Y.; Lu, H.; Tsang, D.C.; Liu, W.; Wang, X.; Li, X.; Zhu, L. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Sci. Total Environ. 2016, 544, 670–676. [Google Scholar] [CrossRef]
- Wang, B.; Wu, C.; Liu, W.; Teng, Y.; Luo, Y.; Christie, P.; Guo, D. Levels and patterns of organochlorine pesticides in agricultural soils in an area of extensive historical cotton cultivation in Henan province, China. Environ. Sci. Pollut. Res. 2016, 23, 6680–6689. [Google Scholar] [CrossRef] [Green Version]
- Dumanoglu, Y.; Gaga, E.O.; Gungormus, E.; Sofuoglu, S.C.; Odabasi, M. Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Sci. Total Environ. 2017, 580, 920–935. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Pena-Abaurrea, M.; de la Torre, V.G.; Ramos, L. Ultrasound-assisted extraction followed by disposable pipette purification for the determination of polychlorinated biphenyls in small-size biological tissue samples. J. Chromatogr. A 2013, 1317, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Flores-Ramirez, R.; Medellin-Garibay, S.; Castillo, C.; Ilizaliturri-Hernandez, C.; Zuki-Orozco, B.; Batres-Esquivel, L.; Diaz-Barriga, F. Application of focused ultrasound-assisted extraction to the determination of persistent organic pollutants (POPs) in soil samples. Bull. Environ. Contam. Toxicol. 2015, 95, 207–214. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.M.; Kentish, S.; Ashokkumar, M. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Rev. Int. 2013, 29, 67–91. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D. Ultrasound: Advances in Food Processing and Preservation; Academic Press: Cambridge, MA, USA, 2017; ISBN 0-12-804614-7. [Google Scholar]
- Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: A review. Environ. Pollut. 2000, 108, 3–14. [Google Scholar] [CrossRef]
Parameters | Values/Settings |
---|---|
Scan Time | <1 s/scan |
Initial temperature | 130 °C, hold 4 min |
Temperature program | 130–300 °C at 30 °C/min |
Final temperature | 300 °C, hold 2 min |
Injector temperature | 280 °C |
Transfer line temperature | 280 °C |
Injection volume | 1 µL |
Pulsed splitless inlet program | 9.5 psi, 45.1 mL/min He |
Injection pulse pressure | 50 psi until 1.50 min |
Purge flow to split vent 4 | 40 mL/min at 2 min |
Site Name | pH | Organic Matter (% Dry) | Particle Size Distribution (%) | Texture | |||
---|---|---|---|---|---|---|---|
Gravel | Sand | Silt | Clay | ||||
Site 1 | 6.5 | 1.4 | 0.2 | 90.1 | 4.9 | 4.9 | Sand |
Site 2 | 6.36 | 1.3 | 0.3 | 83 | 9.7 | 7.3 | Loamy Sand |
Site 3 | 6.12 | 1.6 | 0.2 | 88.5 | 5.7 | 5.7 | Sand |
Site 4 | 6.26 | 1.6 | 1.8 | 74.9 | 15.9 | 9.2 | Sandy Loam |
Site 5 | 6.07 | 1.2 | 0.5 | 90.4 | 4.0 | 5.6 | Sand |
Methods | Mean DDTs (µg/kg) |
---|---|
No Column | 96 ± 12 |
With Column | 98 ± 5 |
Site Name | Mean DDTs (µg/kg) |
---|---|
Site 1 | 114 ± 26 |
Site 2 | 108 ± 14 |
Site 3 | 341 ± 20 |
Site 4 | 96 ± 23 |
Site 5 | 95 ± 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Vanderburgt, S.; Santos, R.M.; Chiang, Y.W. Process Intensification of Dichlorodiphenyltrichloroethane Detection Methods for Determining Trace Concentrations in Soils. Sustain. Chem. 2020, 1, 63-74. https://doi.org/10.3390/suschem1010006
Zhao J, Vanderburgt S, Santos RM, Chiang YW. Process Intensification of Dichlorodiphenyltrichloroethane Detection Methods for Determining Trace Concentrations in Soils. Sustainable Chemistry. 2020; 1(1):63-74. https://doi.org/10.3390/suschem1010006
Chicago/Turabian StyleZhao, Jinghan, Stephen Vanderburgt, Rafael M. Santos, and Yi Wai Chiang. 2020. "Process Intensification of Dichlorodiphenyltrichloroethane Detection Methods for Determining Trace Concentrations in Soils" Sustainable Chemistry 1, no. 1: 63-74. https://doi.org/10.3390/suschem1010006
APA StyleZhao, J., Vanderburgt, S., Santos, R. M., & Chiang, Y. W. (2020). Process Intensification of Dichlorodiphenyltrichloroethane Detection Methods for Determining Trace Concentrations in Soils. Sustainable Chemistry, 1(1), 63-74. https://doi.org/10.3390/suschem1010006