Facial Emotion Recognition in Obesity and in Fibromyalgia: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Obesity
3.1.1. Eligible Studies
3.1.2. Comments
3.2. Fibromyalgia
3.2.1. Eligible Studies
3.2.2. Comments
4. Discussion
4.1. Pain
4.2. Anthropomorphic Measures
4.3. Alexythimic Traits and Interoception
4.4. The Level of Awareness
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekman, P. Are there basic emotions? Psychol. Rev. 1992, 99, 550–553. [Google Scholar] [CrossRef]
- Koch, A.; Pollatos, O. Reduced facial emotion recognition in overweight and obese children. J. Psychosom. Res. 2015, 79, 635–639. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000; p. 894. [Google Scholar]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Okifuji, A.; Bradshaw, D.H.; Olson, C. Evaluating obesity in fibromyalgia: Neuroendocrine biomarkers, symptoms, and functions. Clin. Rheumatol. 2009, 28, 475–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okifuji, A.; Hare, B.D. The association between chronic pain and obesity. J. Pain Res. 2015, 8, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belt, N.K.; Kronholm, E.; Kauppi, M.J. Sleep problems in fibromyalgia and rheumatoid arthritis compared with the general population. Clin. Exp. Rheumatol. 2009, 27, 35–41. [Google Scholar] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology Preliminary Diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ursini, F.; Naty, S.; Grembiale, R.D. Fibromyalgia and obesity: The hidden link. Rheumatol. Int. 2011, 31, 1403–1408. [Google Scholar] [CrossRef]
- Gota, C.E.; Kaouk, S.; Wilke, W.S. Fibromyalgia and obesity: The association between body mass index and disability, depression, history of abuse, medications, and comorbidities. J. Clin. Rheumatol. 2015, 21, 289–295. [Google Scholar] [CrossRef]
- Yunus, M.B.; Arslan, S.; Aldag, J.C. Relationship between body mass index and fibromyalgia features. Scand. J. Rheumatol. 2002, 31, 27–31. [Google Scholar] [CrossRef]
- Neumann, L.; Lerner, E.; Glazer, Y.; Bolotin, A.; Shefer, A.; Buskila, D. A cross-sectional study of the relationship between body mass index and clinical characteristics, tenderness measures, quality of life, and physical functioning in fibromyalgia patients. Clin. Rheumatol. 2008, 27, 1543–1547. [Google Scholar] [CrossRef]
- Arreghini, M.; Manzoni, G.M.; Castelnuovo, G.; Santovito, C.; Capodaglio, P. Impact of fibromyalgia on functioning in obese patients undergoing comprehensive rehabilitation. PLoS ONE 2014, 9, e91392. [Google Scholar] [CrossRef] [PubMed]
- Varallo, G.; Scarpina, F.; Giusti, E.M.; Suso-Ribera, C.; Cattivelli, R.; Guerrini Usubini, A.; Capodaglio, P.; Castelnuovo, G. The Role of Pain Catastrophizing and Pain Acceptance in Performance-Based and Self-Reported Physical Functioning in Individuals with Fibromyalgia and Obesity. J. Pers. Med. 2021, 11, 810. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Zhang, L.; Cheng, J.K.; Ji, R.R. Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 2008, 28, 5189–5194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mork, P.J.; Vasseljen, O.; Nilsen, T.I. Association between physical exercise, body mass index, and risk of fibromyalgia: Longitudinal data from the Norwegian Nord-Trøndelag Health Study. Arthritis Care Res. 2010, 62, 611–617. [Google Scholar] [CrossRef]
- He, J.; Kastin, A.J.; Wang, Y.; Pan, W. Sleep fragmentation has differential effects on obese and lean mice. J. Mol. Neurosci. 2015, 55, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Onen, S.H.; Onen, F.; Albrand, G.; Decullier, E.; Chapuis, F.; Dubray, C. Pain tolerance and obstructive sleep apnea in the elderly. J. Am. Med. Dir. Assoc. 2010, 11, 612–616. [Google Scholar] [CrossRef]
- Sanders, A.E.; Essick, G.K.; Fillingim, R.; Knott, C.; Ohrbach, R.; Greenspan, J.D.; Diatchenko, L.; Maixner, W.; Dubner, R.; Bair, E.; et al. Sleep apnea symptoms and risk of temporomandibular disorder: OPPERA cohort. J. Dent. Res. 2013, 2 (Suppl. 7), 70S–77S. [Google Scholar] [CrossRef]
- Fernandes, J.; Ferreira-Santos, F.; Miller, K.; Torres, S. Emotional processing in obesity: A systematic review and exploratory meta-analysis. Obes. Rev. 2018, 19, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Pink, A.E.; Lee, M.; Price, M.; Williams, C. A serial mediation model of the relationship between alexithymia and BMI: The role of negative affect, negative urgency and emotional eating. Appetite 2019, 133, 270–278. [Google Scholar] [CrossRef]
- Di Tella, M.; Castelli, L.; Colonna, F.; Fusaro, E.; Torta, R.; Ardito, R.B.; Adenzato, M. Theory of mind and emotional functioning in fibromyalgia syndrome: An investigation of the relationship between social cognition and executive function. PLoS ONE 2015, 10, e0116542. [Google Scholar] [CrossRef]
- Galvez-Sánchez, C.M.; Reyes del Paso, G.A.; Duschek, S. Cognitive impairments in fibromyalgia syndrome: Associations with positive and negative affect, alexithymia, pain catastrophizing and self-esteem. Front. Psychol. 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Van Middendorp, H.; Lumley, M.A.; Moerbeek, M.; Jacobs, J.W.; Bijlsma, J.W.; Geenen, R. Effects of anger and anger regulation styles on pain in daily life of women with fibromyalgia: A diary study. Eur. J. Pain 2010, 14, 176–182. [Google Scholar] [CrossRef]
- Huber, A.; Suman, A.L.; Biasi, G.; Carli, G. Alexithymia in fibromyalgia syndrome: Associations with ongoing pain, experimental pain sensitivity and illness behavior. J. Psychosom. Res. 2009, 66, 425–433. [Google Scholar] [CrossRef]
- Ghiggia, A.; Romeo, A.; Tesio, V.; Di Tella, M.; Colonna, F.; Geminiani, G.C.; Fusaro, E.; Castelli, L. Alexithymia and depression in patients with fibromyalgia: When the whole is greater than the sum of its parts. Psychiatry Res. 2017, 255, 195–197. [Google Scholar] [CrossRef]
- Horta-Baas, G.; Peláez-Ballestas, I.; Queipo, G.; Montero Hernández, U.; Romero-Figueroa, M. Alexithymia is associated with mood disorders, impairment in quality of life and disability in women with fibromyalgia. Clin. Exp. Rheumatol 2020, 123, 17–24. [Google Scholar]
- Carver, C.S.; Harmon-Jones, E. Anger is an approach-related affect: Evidence and implications. Psychol. Bull. 2009, 135, 183. [Google Scholar] [CrossRef]
- Heatherton, T.F.; Wagner, D.D. Cognitive neuroscience of self-regulation failure. Trends Cogn. Sci. 2011, 15, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Schneider, K.L.; Appelhans, B.M.; Whited, M.C.; Oleski, J.; Pagoto, S.L. Trait anxiety, but not trait anger, predisposes obese individuals to emotional eating. Appetite 2010, 55, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Elfhag, K.; Lundh, L.G. TAS-20, alexithymia in obesity, and its links to personality. Scand. J. Psychol. 2007, 4, 391–398. [Google Scholar] [CrossRef]
- Noli, G.; Cornicelli, M.; Marinari, G.M.; Carlini, F.; Scopinaro, N.; Adami, G.F. Alexithymia and eating behaviour in severely obese patients. J. Hum. Nutr. Diet. 2010, 23, 616–619. [Google Scholar] [CrossRef]
- Surcinelli, P.; Baldaro, B.; Balsamo, A.; Bolzani, R.; Gennari, M.; Rossi, N.C. Emotion recognition and expression in young obese participants: Preliminary study. Percept. Mot. Ski. 2007, 105, 477–482. [Google Scholar] [CrossRef]
- Van Strien, T.; Ouwens, M.A. Effects of distress, alexithymia and impulsivity on eating. Eat Behav. 2007, 8, 251–257. [Google Scholar] [CrossRef]
- Di Tella, M.; Castelli, L. Alexithymia and fibromyalgia: Clinical evidence. Front. Psychol. 2013, 4, 909. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.J.; Bagby, R.M.; Parker, J.D. Disorders of Affect Regulation: Alexithymia in Medical and Psychiatric Illness; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sayar, K.; Gulec, H.; Topbas, M. Alexithymia and anger in patients with fibromyalgia. Clin. Rheumatol. 2004, 23, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Courcoulas, A.P.; Yanovski, S.Z.; Bonds, D.; Eggerman, T.L.; Horlick, M.; Staten, M.A. Long-term outcomes of bariatric surgery: A National Institutes of Health symposium. JAMA Surg. 2014, 149, 1323–1329. [Google Scholar] [CrossRef]
- Cook, R.; Brewer, R.; Shah, P.; Bird, G. Alexithymia, not autism, predicts poor recognition of emotional facial expressions. Psychol. Sci. 2013, 24, 723–732. [Google Scholar] [CrossRef]
- Grynberg, D.; Chang, B.; Corneille, O.; Maurage, P.; Vermeulen, N.; Berthoz, S.; Luminet, O. Alexithymia and the processing of emotional facial expressions (EFEs): Systematic review, unanswered questions and further perspectives. PLoS ONE 7 2012, 7, e42429. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa Gil, F.; Ridout, N.; Kessler, H.; Neuffer, M.; Schoechlin, C.; Traue, H.C.; Nickel, M. Facial emotion recognition and alexithymia in adults with somatoform disorders. Depress. Anxiety 2009, 26, E26–E33. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The prisma group preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Debladis, J.; Valette, M.; Strenilkov, K.; Mantoulan, C.; Thuilleaux, D.; Laurier, V.; Molinas, C.; Barone, P.; Tauber, M. Face processing and exploration of social signals in Prader-Willi syndrome: A genetic signature. Orphanet J. Rare Dis. 2019, 14, 262. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Lawson, E.A.; Wilhelm, S. Intranasal oxytocin modulates higher order social cognition in body dysmorphic disorder. Depress. Anxiety 2019, 36, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Horder, J.; Cowen, P.J.; Di Simplicio, M.; Browning, M.; Harmer, C.J. Acute administration of the cannabinoid CB1 antagonist rimonabant impairs positive affective memory in healthy volunteers. Psychopharmacology 2009, 205, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Krendl, A.C.; Macrae, C.N.; Kelley, W.M.; Fugelsang, J.A.; Heatherton, T.F. The good, the bad, and the ugly: An fMRI investigation of the functional anatomic correlates of stigma. Soc. Neurosci. 2006, 1, 5–15. [Google Scholar] [CrossRef]
- Watson, L.S.; Stone, T.D.; Williams, D.; Williams, A.S.; Sims-Robinson, C. High-Fat Diet Impairs Tactile Discrimination Memory in the Mouse. Behav. Brain Res. 2020, 382, 112454. [Google Scholar] [CrossRef]
- Gunay-Aygun, M.; Schwartz, S.; Heeger, S.; O’Riordan, M.A.; Cassidy, S.B. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics 2001, 108, E92. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhou, W.; Yuan, W.; Huang, L.; Zhao, N.; Chen, X. Prader-Willi syndrome in neonates: Twenty cases and review of the literature in Southern China. BMC Pediatr. 2016, 16, 124. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei Balaei, A.; Sutherland, K.; Cistulli, P.; de Chazal, P. Prediction of obstructive sleep apnea using facial landmarks. Physiol. Meas. 2018, 39, 094004. [Google Scholar] [CrossRef]
- Chien, Y.H.; Guilleminault, C. Revue historique sur le syndrome d’apnée obstructive du sommeil chez l’enfant [Historical review on obstructive sleep apnea in children]. Arch. Pediatr. 2017, 24 (Suppl. 1), S2–S6. [Google Scholar] [CrossRef]
- Cistulli, P.A. Craniofacial abnormalities in obstructive sleep apnoea: Implications for treatment. Respirology 1996, 1, 167–174. [Google Scholar] [CrossRef]
- Krishnan, P.; Ramadas, P.; Landsberg, D. Bariatric Surgery Causing Hyperammonemia. Cureus 2019, 11, e5098. [Google Scholar] [CrossRef] [Green Version]
- Chanda, A.; Chatterjee, S. Predicting Obesity Using Facial Pictures during COVID-19 Pandemic. Biomed. Res. Int. 2021, 2021, 6696357. [Google Scholar] [CrossRef]
- Valente, D.S.; Braga da Silva, J.; Cora Mottin, C.; Benzano Bumaguin, D.; Santos Rossi, D.D.; Grimaldi Lerias, A.; Souto Valente, S.; Vontobel Padoin, A. Influence of Massive Weight Loss on the Perception of Facial Age: The Facial Age Perceptions Cohort. Plast. Reconstr. Surg. 2018, 142, 481e–488e. [Google Scholar] [CrossRef]
- Sherer, D.M.; Hsieh, V.; Granderson, F.; Aroh, B.; Dalloul, M. Mid-trimester fetal facial dysmorphology associated with 2p25.3 microdeletion. J. Clin. Ultrasound 2020, 48, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Starbuck, J.M.; Ward, R.E. The affect of tissue depth variation on craniofacial reconstructions. Forensic Sci. Int. 2007, 172, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Dhanju, S.; Al-Saleh, S.; Amin, R.; Weiss, S.K.; Zweerink, A.; Toulany, A.; Murray, B.J.; Narang, I. A retrospective analysis of clinical characteristics of childhood narcolepsy. Paediatr. Child Health 2018, 23, e95–e101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truelsen, T.; Krarup, L.H. Stroke awareness in Denmark. Neuroepidemiology 2010, 35, 165–170. [Google Scholar] [CrossRef]
- Iuliano, S.L.; Laws, E.R., Jr. Early recognition of Cushing’s disease: A case study. J. Am. Assoc. Nurse Pract. 2013, 25, 402–406. [Google Scholar] [CrossRef]
- Guaraldi, F.; Salvatori, R. Cushing syndrome: Maybe not so uncommon of an endocrine disease. J. Am. Board Fam. Med. 2012, 25, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Connor, C.W.; Segal, S. The importance of subjective facial appearance on the ability of anesthesiologists to predict difficult intubation. Anesth. Analg. 2014, 118, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.; Senior, J.; Murtagh, L. ASD, ADHD, mental health conditions and psychopharmacology in neurogenetic syndromes: Parent survey. J. Intellect. Disabil. Res. 2015, 59, 307–318. [Google Scholar] [CrossRef]
- Farooq, M.; Sazonov, E. Segmentation and Characterization of Chewing Bouts by Monitoring Temporalis Muscle Using Smart Glasses with Piezoelectric Sensor. IEEE J. Biomed. Health Inform. 2017, 21, 1495–1503. [Google Scholar] [CrossRef]
- Legenbauer, T.; Kleinstäuber, M.; Müller, T.; Stangier, U. Are individuals with an eating disorder less sensitive to aesthetic flaws than healthy controls? J. Psychosom. Res. 2008, 65, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Salazar, D.; Esteves, C.; Ferreira, M.J.; Pedro, J.; Pimenta, T.; Portugal, R.; Carvalho, D. Avascular femoral necrosis as part of Cushing syndrome presentation: A case report. J. Med. Case Rep. 2021, 15, 287. [Google Scholar] [CrossRef]
- Fletcher, E.C.; Shah, A.; Qian, W.; Miller, C.C., 3rd. “Near miss” death in obstructive sleep apnea: A critical care syndrome. Crit. Care Med. 1991, 19, 1158–1164. [Google Scholar] [CrossRef]
- Whittington, J.; Holland, T. Recognition of emotion in facial expression by people with Prader–Willi syndrome. J. Intellect. Disabil. Res. 2011, 55, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Baldaro, B.; Balsamo, A.; Caterina, R.; Fabbrici, C.; Cacciari, E.; Trombini, G. Decoding difficulties of facial expression of emotions in mothers of children suffering from developmental obesity. Psychother. Psychosom. 1996, 65, 258–261. [Google Scholar] [CrossRef]
- Cserjési, R.; Vermeulen, N.; Lénárd, L.; Luminet, O. Reduced capacity in automatic processing of facial expression in restrictive anorexia nervosa and obesity. Psychiatry Res. 2011, 188, 253–257. [Google Scholar] [CrossRef]
- Scarpina, F.; Varallo, G.; Castelnuovo, G.; Capodaglio, P.; Molinari, E.; Mauro, A. Implicit facial emotion recognition of fear and anger in obesity. Eat Weight Disord. 2021, 26, 1243–1251. [Google Scholar] [CrossRef]
- Baldaro, B.; Rossi, N.; Caterina, R.; Codispoti, M.; Balsamo, A.; Trombini, G. Deficit in the discrimination of nonverbal emotions in children with obesity and their mothers. Int. J. Obes. 2003, 27, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percinel, I.; Ozbaran, B.; Kose, S.; Simsek, D.G.; Darcan, S. Increased deficits in emotion recognition and regulation in children and adolescents with exogenous obesity. World J. Biol. Psychiatry 2018, 19, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; von Klitzing, K.; Keitel-Korndörfer, A.; Wendt, V.; Grube, M.; Herpertz, S.; Schutz, A.; Klein, A.M. Emotional availability, understanding emotions, and recognition of facial emotions in obese mothers with young children. J. Psychosom. Res. 2016, 80, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Weiß, S.; Winkelmann, A.; Duschek, S. Recognition of facially expressed emotions in patients with fibromyalgia syndrome. Behav. Med. 2013, 39, 146–154. [Google Scholar] [CrossRef]
- Muñoz Ladrón de Guevara, C.; Reyes Del Paso, G.A.; Fernández-Serrano, M.J.; Duschek, S. Facial Emotion Recognition and Executive Functions in Fibromyalgia. Pain Med. 2021, 22, 1619–1629. [Google Scholar] [CrossRef]
- Bagby, R.M.; Parker, J.D.; Taylor, G.J. The twenty-item Toronto Alexithymia Scale—I. Item selection and cross-validation of the factor structure. J. Psychosom. Res. 1994, 38, 23–32. [Google Scholar] [CrossRef]
- Lane, R.D.; Quinlan, D.M.; Schwartz, G.E.; Walker, P.A.; Zeitlin, S.B. The Levels of Emotional Awareness Scale: A cognitive-developmental measure of emotion. J. Personal. Assess. 1990, 55, 124–134. [Google Scholar] [CrossRef]
- Fiore, H.; Travis, S.; Whalen, A.; Auinger, P.; Ryan, S. Potentially protective factors associated with healthful body mass index in adolescents with obese and nonobese parents: A secondary data analysis of the third national health and nutrition examination survey, 1988-1994. J. Am. Diet. Assoc. 2006, 106, 55–64. [Google Scholar] [CrossRef]
- Pine, D.S.; Goldstein, R.B.; Wolk, S.; Weissman, M.M. The association between childhood depression and adulthood body mass index. Pediatrics 2001, 107, 1049–1056. [Google Scholar] [CrossRef]
- Hartup, W.W. Social relationships and their developmental significance. Am. Psychol. 1989, 44, 120. [Google Scholar] [CrossRef]
- Shaffer, D.R.; Kipp, K. Developmental Psychology: Childhood & Adolescence; Cengage Learning: San Francisco, CA, USA, 2002. [Google Scholar]
- Moldofsky, H.K. Disordered sleep in fibromyalgia and related myofascial facial pain conditions. Dent. Clin. North Am. 2001, 45, 701–713. [Google Scholar]
- Jin, H.; Patil, P.M.; Sharma, A. Topical review: The enigma of fibromyalgia. J. Oral Facial Pain Headache 2014, 28, 107–118. [Google Scholar] [CrossRef]
- Frenger, P. Inexpensive Complex Hand Model Twenty Years Later. Biomed. Sci. Instrum. 2015, 51, 378–384. [Google Scholar] [PubMed]
- Di Tella, M.; Enrici, I.; Castelli, L.; Colonna, F.; Fusaro, E.; Ghiggia, A.; Romeo, A.; Tesio, V.; Adenzato, M. Alexithymia, not fibromyalgia, predicts the attribution of pain to anger-related facial expressions. J. Affect. Disord. 2018, 227, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Miscio, G.; Guastamacchia, G.; Brunani, A.; Priano, L.; Baudo, S.; Mauro, A. Obesity and peripheral neuropathy risk: A dangerous liaison. J. Peripher. Nerv. Syst. 2005, 10, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Sarzi-Puttini, P.; Atzeni, F.; Fiorini, T.; Panni, B.; Randisi, G.; Turiel, M.; Carrabba, M. Validation of an Italian version of the Fibromyalgia Impact Questionnaire (FIQ-I). Clin. Exp. Rheumatol. 2003, 21, 459–464. [Google Scholar] [PubMed]
- Tal-Akabi, A.; Oesch, P.; Hilfiker, R.; Keller, S. Schmerzbeschreibung: Short-Form-McGill-Pain-Questionnaire (SF MPQ). Bern Hans Huber Hogrefe 2007. [Google Scholar]
- Crombez, G.; Eccleston, C.; Van Damme, S.; Vlaeyen, J.W.S.; Karoly, P. Fear-Avoidance Model of Chronic Pain. Clin. J. Pain. 2012, 28, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, R.R.; Cahalan, C.; Mensing, G.; Smith, M.; Haythornthwaite, J.A. Pain, catastrophizing, and depression in the rheumatic diseases. Nat. Rev. Rheumatol. 2011, 7, 216–224. [Google Scholar] [CrossRef]
- Varallo, G.; Giusti, E.M.; Scarpina, F.; Cattivelli, R.; Capodaglio, P.; Castelnuovo, G. The Association of Kinesiophobia and Pain Catastrophizing with Pain-Related Disability and Pain Intensity in Obesity and Chronic Lower-Back Pain. Brain Sci. 2021, 11, 11. [Google Scholar] [CrossRef]
- Vincent, H.K.; George, S.Z.; Seay, A.N.; Vincent, K.R.; Hurley, R.W. Resistance exercise, disability, and pain catastrophizing in obese adults with back pain. Med. Sci. Sports Exerc. 2014, 46, 1693. [Google Scholar] [CrossRef] [Green Version]
- Amy, E.A.; Kozak, A.T. “The more pain I have, the more I want to eat”: Obesity in the context of chronic pain. Obesity 2012, 20, 2027–2034. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Pulgar, A.; Duschek, S.; Garrido, S. Cognitive impairment in fibromyalgia syndrome: The impact of pain, emotional disorders, medication, and cardiovascular regulation. Eur. J. Pain 2012, 16, 421–429. [Google Scholar] [CrossRef]
- Herrington, J.D.; Taylor, J.M.; Grupe, D.W.; Curby, K.M.; Schultz, R.T. Bidirectional communication between amygdala and fusiform gyrus during facial recognition. Neuroimage 2011, 56, 2348–2355. [Google Scholar] [CrossRef] [Green Version]
- Sambataro, F.; Dimalta, S.; Di Giorgio, A.; Taurisano, P.; Blasi, G.; Scarabino, T.; Giannatempo, G.; Nardini, M.; Bertolino, A. Preferential responses in amygdala and insula during presentation of facial contempt and disgust. Eur. J. Neurosci. 2006, 24, 2355–2362. [Google Scholar] [CrossRef]
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.D.; Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 2005, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, V.; Li, W.; Bird, G.C.; Han, J.S. The amygdala and persistent pain. Neurosci. 2004, 10, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortelli, P.; Giannini, G.; Favoni, V.; Cevoli, S.; Pierangeli, G. Nociception and autonomic nervous system. Neurol Sci. Off. J. Ital. Neurol Soc. Ital Soc. Clin. Neurophysiol. 2013, 34 (Suppl. 1), S41–S46. [Google Scholar] [CrossRef] [Green Version]
- Steinweg, D.L.; Dallas, A.P.; Rea, W.S. Fibromyalgia: Unspeakable suffering, a prevalence study of alexithymia. Psychosomatics 2011, 52, 255–262. [Google Scholar] [CrossRef]
- Tuzer, V.; Bulut, S.D.; Bastug, B.; Kayalar, G.; Göka, E.; Beştepe, E. Causal attributions and alexithymia in female patients with fibromyalgia or chronic low back pain. Nord. J. Psychiatry 2011, 65, 138–144. [Google Scholar] [CrossRef]
- Martinez-Sanchez, F.; Fernández-Abascal, E.G.; Sánchez-Pérez, N. Recognition of Emotional Facial Expressions in Alexithymia. Studia Psychol. 2017, 59, 206. [Google Scholar] [CrossRef]
- Brewer, R.; Cook, R.; Bird, G. Alexithymia: A general deficit of interoception. R Soc. Open Sci. 2016, 3, 150664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceunen, E.; Vlaeyen, J.W.; Van Diest, I. On the origin of interoception. Front. Psychol. 2016, 7, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, B.M.; Pollatos, O. The body in the mind: On the relationship between interoception and embodiment. Top. Cogn. Sci. 2012, 4, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.D.; Sechrest, L.; Reidel, R.; Shapiro, D.E.; Kaszniak, A. Pervasive emotion recognition deficit common to alexithymia and the repressive coping style. Psychosom. Med. 2000, 62, 492–501. [Google Scholar] [CrossRef]
- Parker, P.D.; Prkachin, K.M.; Prkachin, G.C. Processing of facial expressions of negative emotion in alexithymia: The influence of temporal constraint. J. Personal. 2005, 73, 1087–1107. [Google Scholar] [CrossRef] [PubMed]
- Prkachin, G.C.; Casey, C.; Prkachin, K.M. Alexithymia and perception of facial expressions of emotion. Personal. Individ. Differ. 2009, 46, 412–417. [Google Scholar] [CrossRef]
- Montoya, P.; Larbig, W.; Braun, C.; Preissl, H.; Birbaumer, N. Influence of social support and emotional context on pain processing and magnetic brain responses in fibromyalgia. Arthritis Rheum. 2004, 50, 4035–4044. [Google Scholar] [CrossRef]
- Montoya, P.; Sitges, C.; García-Herrera, M.; Rodríguez-Cotes, A.; Izquierdo, R.; Truyols, M.; Collado, D. Reduced brain habituation to somatosensory stimulation in patients with fibromyalgia. Arthritis Rheum. 2006, 54, 1995–2003. [Google Scholar] [CrossRef]
- Pollatos, O.; Herbert, B.M.; Wankner, S.; Dietel, A.; Wachsmuth, C.; Henningsen, P.; Sack, M. Autonomic imbalance is associated with reduced facial recognition in somatoform disorders. J. Psychosom. Res. 2011, 71, 232–239. [Google Scholar] [CrossRef]
- De Tommaso, M.; Ricci, K.; Conca, G.; Vecchio, E.; Delussi, M.; Invitto, S. Empathy for pain in fibromyalgia patients: An EEG study. Int. J. Psychophysiol. 2019, 146, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, H.; de Siqueira Rotenberg, L. Emotion perception and theory of mind in obesity: A systematic review on the impact of social cognitive deficits on dysfunctional eating behaviors. Surg. Obes. Relat. Dis. 2021, 17, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.D.; De Waal, F.B. Empathy: Its ultimate and proximate bases. Behav. Brain Sci. 2002, 25, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Critchley, H.D.; Garfinkel, S.N. Interoception and emotion. Curr. Opin. Psychol. 2017, 17, 7–14. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Pictures of facial affect. In Consulting Psychologists; Consulting Psychologists Press: Mountain View, CA, USA, 1976. [Google Scholar]
- Izard, C.E. Basic emotions, relations among emotions, and emotion-cognition relations. Psychol. Rev. 1992, 99, 561–565. [Google Scholar] [CrossRef]
- Adolphs, R. Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behav. Cogn. Neurosci. Rev. 2002, 1, 21–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbi, M.; Bastiaansen, J.; Keysers, C. A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways. PloSone 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Klucken, T.; Schweckendiek, J.; Koppe, G.; Merz, C.J.; Kagerer, S.; Walter, B.; Sammer, G.; Vaitl, D.; Stark, R. Neural correlates of disgust-and fear-conditioned responses. Neuroscience 2012, 201, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Wicker, B.; Keysers, C.; Plailly, J.; Royet, J.P.; Gallese, V.; Rizzolatti, G. Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron 2003, 40, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Rozin, P.; Fallon, A.E. A perspective on disgust. Psychol. Rev. 1987, 94, 23. [Google Scholar] [CrossRef]
- Griffiths, J.; Troop, N.A. Disgust and fear ratings of eating disorder-relevant stimuli: Associations with dieting concerns and fat intake. Anxiety Stress Coping 2006, 19, 421–433. [Google Scholar] [CrossRef]
- Houben, K.; Havermans, R.C. A delicious fly in the soup. The relationship between disgust, obesity, and restraint. Appetite 2012, 58, 827–830. [Google Scholar] [CrossRef]
- Simmons, W.K.; DeVille, D.C. Interoceptive contributions to healthy eating and obesity. Curr. Opin. Psychol. 2017, 17, 106–112. [Google Scholar] [CrossRef]
- Scarpina, F.; Melzi, L.; Castelnuovo, G.; Mauro, A.; Marzoli, S.B.; Molinari, E. Explicit and implicit components of the emotional processing in non-organic vision loss: Behavioral evidence about the role of fear in functional blindness. Front. Psychol. 2018, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Fazio, R.H.; Olson, M.A. Implicit measures in social cognition research: Their meaning and use. Annu. Rev. Psychol. 2003, 54, 297–327. [Google Scholar] [CrossRef]
- Longo, M.R. Implicit and explicit body representations. Eur. Psychol. 2015, 20, 6–15. [Google Scholar] [CrossRef] [Green Version]
- De Lange, F.P.; Roelofs, K.; Toni, I. Motor imagery: A window into the mechanisms and alterations of the motor system. Cortex 2008, 44, 494–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Roldán, A.M.; Muñoz, M.A.; Cifre, I.; Sitges, C.; Montoya, P. Altered psychophysiological responses to the view of others’ pain and anger faces in fibromyalgia patients. J. Pain 2013, 14, 709–719. [Google Scholar] [CrossRef] [PubMed]
Reference | Samples | Visual Stimuli | Targeted Emotions | Assessment of Alexithymia (If Available) | Results |
---|---|---|---|---|---|
Records relative to obesity | |||||
Koch and Pollatos [2] | 33 children (mean age: 8.59 years):
| Karolinska Directed Emotional Faces database | happiness; anger; sadness; neutral expression. | - | Overweight children ↓ accuracy than [C], especially for angry and neutral expressions. |
Baldaro et al. [73] | 21 children affected by obesity (mean age: 10.7 years) with percentage of weight excess ≥ 40%. [C] 21 normal weight or moderately overweight children (mean age: 10–11 years), with 24.9 % of weight excess. | Max Planck Institute of Munich database | happiness; anger; sadness; fear. | - | Overweight children ↓ accuracy than [C]. |
Percinel et al. [74] | 30 pre-adolescents and adolescents (age 11–18 years) with obesity; BMI greater than the 95th percentile. [C] 30 pre-adolescents and adolescents (age 11–18 years) with no chronic medical illness and body mass index ranging from >25th to <75th percentile of normative data. | Ekman and Friesen database (1976) | happiness; sadness; surprise; anger; disgust; fear; neutral expressions. | - | Affected individuals ↓ accuracy than [C]. |
Surcinelli et al. [34] | 30 preadolescents and adolescents (mean age: 12.3 years) affected by obesity (BMI between 1.63 and 2.64 standard deviations from the 50th percentile of the population of Italian children). [C] 30 normal weight preadolescents and adolescents (mean age: 12.4 years), with mean of weight excess 4.2%. | Ekman and Friesen database | happiness; sadness; surprise; anger; disgust; fear; neutral expressions. | Emotional Awareness Scale | Affected individuals = accuracy than [C]. Adolescents ↑ level of alexithymia than [C]. |
Bergmann et al. [75] | 73 mothers (mean age: 30.77 years) affected by obesity (BMI ≥ 30). [C] 73 normal-weight mothers (mean age: 31.74 years), with a BMI ≤ 24.9. | Radboud Faces database | happiness; sadness; surprise; anger; disgust; fear; neutral expressions; contempt ф. | - | Affected mothers = accuracy than [C]. |
Scarpina et al. [72] | 20 women affected by obesity (mean age: 55 years); mean BMI 43.79. [C] 20 healthy-weight women (mean age: 47 years); mean BMI 22.17. | Ekman and Friesen database (1976) | angry; fear; neutral expression. | Toronto Alexithymia Scale | Affected individuals ↓ accuracy than [C] only for fear, but not anger. Patients = level of alexithymia than [C]. |
Records relative to fibromyalgia | |||||
Weiß et al. [76] | 35 affected women (mean age: 58.5 years). [C] 35 healthy women (mean age: 57.3 years). | Karolinska Directed Emotional Faces database | happiness, anger; sadness; disgust; neutral expression; anxiety ф. | Toronto Alexithymia Scale | Patients ↓ accuracy than [C]. Patients ↑ level of alexithymia than [C]. |
Di Tella et al. [23] | 40 affected women (mean age: 51.75 years). [C] 41 healthy women (mean age: 51.83 years). | Ekman and Friesen database | happiness; sadness; disgust; fear; surprise; anger; neutral expression. | Toronto Alexithymia Scale | Patients ↓ accuracy than [C] only for anger and disgust. Patients ↑ level of alexithymia than [C]. |
Muñoz Ladrón de Guevara et al. [77] | Fifty-two fibromyalgia patients (mean age: 51.25 years); mean BMI: 28.29. [C] thirty-two healthy individuals (mean age: 52.94 years); mean BMI: 26.49 | Ekman and Friesen database | happiness; sadness; anger; fear; surprise; disgust. | - | Patients ↓ accuracy than [C]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaioli, G.; Scarpina, F. Facial Emotion Recognition in Obesity and in Fibromyalgia: A Systematic Review. NeuroSci 2021, 2, 339-352. https://doi.org/10.3390/neurosci2040025
Vaioli G, Scarpina F. Facial Emotion Recognition in Obesity and in Fibromyalgia: A Systematic Review. NeuroSci. 2021; 2(4):339-352. https://doi.org/10.3390/neurosci2040025
Chicago/Turabian StyleVaioli, Giulia, and Federica Scarpina. 2021. "Facial Emotion Recognition in Obesity and in Fibromyalgia: A Systematic Review" NeuroSci 2, no. 4: 339-352. https://doi.org/10.3390/neurosci2040025
APA StyleVaioli, G., & Scarpina, F. (2021). Facial Emotion Recognition in Obesity and in Fibromyalgia: A Systematic Review. NeuroSci, 2(4), 339-352. https://doi.org/10.3390/neurosci2040025