The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review
Abstract
:1. Introduction
2. A New Concept of Multiple Sclerosis: A Smurring Disease
3. Biological Markers of Oxidative Stress
4. Mitochondrial Dysfunction
5. The Role of Microglia and the Influence of Iron in the Pathogenesis of Multiple Sclerosis
6. Magnetic Resonance Findings in Multiple Sclerosis
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amin, M.; Hersh, C.M. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener. Dis. Manag. 2023, 13, 47–70. [Google Scholar] [PubMed]
- Peixoto de Barcelos, I.; Troxell, R.M.; Graves, J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology 2019, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Bitzer-Quintero, O.K.; Ramírez-Anguiano, A.C.; Flores-Alvarado, L.J.; Ramírez-Ramírez, V.; Macias-Islas, M.A.; Torres-Sánchez, E.D. Immunolgy and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach. Clin. Dev. Immunol. 2013, 2013, 708659. [Google Scholar] [PubMed]
- Travers, B.S.; Tsang, B.K.; Barton, J.L. Multiple sclerosis: Diagnosis, disease-modifying therapy and prognosis. R. Aust. Coll. Gen. Pract. 2022, 51, 199–206. [Google Scholar]
- Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J.; et al. Time for a new mechanism-driven framework to define multiple sclerosis progression. Lancet Neurol. 2023, 22, 78–88. [Google Scholar]
- Lublin, F.D.; Coetzee, T.; Cohen, J.A.; Marrie, R.A.; Thompson, A.J. The 2013 clinical course descriptors for multiple sclerosis: A clarification. Neurology 2020, 94, 1088–1092. [Google Scholar]
- Giovannoni, G.; Popescu, V.; Wuerfel, J.; Hellwig, K.; Iacobaeus, E.; Jensen, M.B.; García-Domínguez, J.M.; Sousa, L.; De Rossi, N.; Hupperts, R.; et al. Smouldering multiple sclerosis: The “real MS”. Ther. Adv. Neurol. Disord. 2022, 15, 17562864211066751. [Google Scholar]
- Lublin, F.D.; Häring, D.A.; Ganjgahi, H.; Ocampo, A.; Hatami, F.; Čuklina, J.; Aarden, P.; Dahlke, F.; Arnold, D.L.; Wiendl, H.; et al. How patients with multiple sclerosis acquire disability. Brain 2022, 145, 3147–3161. [Google Scholar]
- Guerrero, B.L.; Sicotte, N.L. Microglia in Multiple Sclerosis: Friend or Foe? Front. Immunol. 2020, 11, 374. [Google Scholar]
- Selmaj, K.; Cree, B.A.; Barnett, M.; Thompson, A.; Hartung, H.-P. Multiple sclerosis: Time for early treatment with high-efficacy drugs. J. Neurol. 2024, 271, 105–115. [Google Scholar]
- Havla, J.; Hohfeld, R. Antibody Therapies for Progressive Multiple Sclerosis and for Promoting Repair. Neurotherapeutics 2022, 19, 774–784. [Google Scholar] [PubMed]
- Ohl, K.; Tenbrock, K.; Kipp, M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 2016, 277, 58–67. [Google Scholar] [PubMed]
- Emamnejad, R.; Pagnin, M.; Petratos, S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci. Biobehav. Rev. 2024, 164, 105788. [Google Scholar]
- Hollen, C.; Neilson, L.E.; Barajas, R.F.; Greenhouse, I.; Spain, R.I. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front. Neurol. 2022, 13, 1025659. [Google Scholar]
- Vasic, M.; Topic, A.; Markovic, B.; Milinkovic, N.; Dincic, E. Oxidative stress-related risk of the multiple sclerosis development. J. Med. Biochem. 2023, 42, 1–8. [Google Scholar] [CrossRef]
- Bizon, A.; Chojdak-Luksierwicz, J.; Koltuniuk, A.; Budrewicz, S.; Pokryszko-Dragan, A.; Piwowar, A. Evaluation of Selected Oxidant/Antioxidant Parameters in Patients with Relapsing-Remitting Multiple Sclerosis Undergoing Diesase-Modifying Therapies. Antioxidants 2022, 11, 2416. [Google Scholar] [CrossRef]
- Song, T.; Song, X.; Zhu, C.; Patrick, R.; Skurla, M.; Santangelo, I.; Green, M.; Harper, D.; Ren, B.; Forester, B.P.; et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2022, 72, 101503. [Google Scholar]
- Bizon, A.; Lukasiewicz, J.C.; Budrewicz, S.; Pokryszko-Dragan, A.; Piwowar, A. Exploring the Relationship between Antioxidant Enzymes, Oxidative Stress Markers, and Clinical profile in Relapsing-Remitting Multiple Sclerosis. Antioxidants 2023, 12, 1638. [Google Scholar] [CrossRef]
- Burgetova, A.; Dusek, P.; Uher, T.; Vaneckova, M.; Vejrazka, M.; Burgetova, R.; Horakova, D.; Srpova, B.; Krasensky, J.; Lambert, L. Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics 2022, 12, 1365. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Gui, L.-N.; Liu, Y.-Y.; Shi, S.; Cheng, Y. Oxidative Stress marker Aberrrations in Multiple Sclerosis: A Meta-Analysis Study. Front. Neurosci. 2020, 14, 823. [Google Scholar]
- Wang, P.-F.; Jiang, F.; Zeng, Q.-M.; Yin, W.-F.; Hu, Y.-Z.; Li, Q.; Hu, Z.-L. Mitochondrial and metabolic dysfunction of peripheral immune cells in multiple sclerosis. J. Neuroinflamm. 2024, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Hubens, W.; Vallbona-Garcia, A.; de Coo, I.; van Tienen, F.; Webers, C.; Smeets, H.; Gorgels, T. Blood biomarkers fro assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2022, 62, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Klemmensen, M.M.; Borrowman, S.H.; Pearce, C.; Pyles, B.; Chandra, B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024, 21, e00292. [Google Scholar] [CrossRef] [PubMed]
- Ghonimi, N.A.; Elsharkawi, K.A.; Khyal, D.S.; Abdelghani, A.A. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Mult. Scler. Relat. Disord. 2021, 51, 102941. [Google Scholar] [CrossRef]
- Zanfardino, P.; Doccini, S.; Santorelli, F.M.; Petruzzella, V. Tackling Disfunction of Mitochondrial Bioenergetics in the Brain. Int. J. Mol. Sci. 2021, 22, 8325. [Google Scholar] [CrossRef]
- Moos, W.H.; Faller, D.V.; Glavas, I.P.; Harpp, D.N.; Kamperi, N.; Kanara, I.; Kodukula, K.; Mavrakis, A.N.; Pernokas, J.; Pernokas, M.; et al. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem. Pharmacol. 2021, 193, 114809. [Google Scholar] [CrossRef]
- Prasuhn, J.; Kunert, L.; Bruggemann, N. Neuroimaging Methods to Map In Vivo Changes of OXPHOS and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2022, 23, 7263. [Google Scholar] [CrossRef]
- Blagov, A.V.; Sukhorukov, V.N.; Orekhov, A.N.; Sazonova, M.A.; Melnichenko, A.A. Significance of Mitochondrial Dysfunction in the Progression of Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 12725. [Google Scholar] [CrossRef]
- Absinta, M.; Maric, D.; Gharagozloo, M.; Garton, T.; Smith, M.D.; Jin, J.; Fitzgerald, K.C.; Song, A.; Liu, P.; Lin, J.P.; et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 2021, 597, 709–714. [Google Scholar] [CrossRef]
- Airas, L.; Yong, V.W. Microglia in multiple sclerosis—Pathogenesis and imaging. Curr. Opin. Neurol. 2022, 35, 299–306. [Google Scholar] [CrossRef]
- Zia, S.; Rawji, K.S.; Michaels, N.J.; Burr, M.; Kerr, B.J.; Healy, L.M.; Plemel, J.R. Microglia Diversity in Health and Multiple Sclerosis. Front. Immunol. 2020, 11, 588021. [Google Scholar]
- Cignarella, F.; Filipello, F.; Bollman, B.; Cantoni, C.; Locca, A.; Mikesell, R.; Manis, M.; Ibrahim, A.; Deng, L.; Benitez, B.A.; et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020, 140, 513–534. [Google Scholar] [PubMed]
- Mado, H.; Adamczyk-Sowa, M.; Sowa, P. Role of Microglial Cells in the Pathophisiology of MS: Sinergic or Antagonistic? Int. J. Mol. Sci. 2023, 24, 1861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, F.; Sun, M.; Wu, N.; Liu, B.; Yi, X.; Ge, R.; Fan, X. Microglia in the context of multiple sclerosis. Front. Neurol. 2023, 14, 1157287. [Google Scholar]
- Peruzzotti-Jametti, L.; Willis, C.M.; Krzak, G.; Hamel, R.; Pirvan, L.; Ionescu, R.B.; Reisz, J.A.; Prag, H.A.; Garcia-Segura, M.E.; Wu, V.; et al. Mitochondrial complex I activity in microglia sustains neuroinflammation. Nature 2024, 628, 195–203. [Google Scholar]
- Papiri, G.; D’Andreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple sclerosis: Inflammatory and Neuroglial Aspects. Curr. Issues Mol. Biol. 2023, 45, 1443–1470. [Google Scholar] [CrossRef]
- Liu, S.; Gao, X.; Zhou, S. New Target for Prevetion and Treatment of Neuroinflammation: Microglia Iron Accumulation and Ferroptosis. ASN Neuro 2022, 14, 17590914221133236. [Google Scholar]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta-Mol. Cell Res. 2019, 1866, 118535. [Google Scholar]
- Muhlenhoff, U.; Braymer, J.J.; Christ, S.; Rietzschel, N.; Uzarska, M.A.; Weiler, B.D.; Lill, R. Glutaredoxins and iron-sulfur protein biogenensis at the interface of redox biology and iron metabolism. Biol. Chem. 2020, 401, 1407–1428. [Google Scholar]
- Ryan, S.K.; Zelic, M.; Han, Y.; Teeple, E.; Chen, L.; Sadeghi, M.; Shankara, S.; Guo, L.; Li, C.; Pontarelli, F.; et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 2022, 26, 12–26. [Google Scholar]
- Dusek, P.; Hofer, T.; Alexander, J.; Roos, P.M.; Aaseth, J.O. Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022, 12, 714. [Google Scholar] [CrossRef] [PubMed]
- Shehjar, F.; James, A.W.; Mahajan, R.; Shah, Z.A. Inhibition of iron-induced cofilin activation and inflammation in microglia by a novel cofilin inhibitor. J. Neurochem. 2025, 169, 16260. [Google Scholar]
- Dutt, S.; Hamza, I.; Bartnikas, T.B. Molecular Mechanisms of iron and Heme Metabolism. Annu. Rev. Nutr. 2022, 42, 311–335. [Google Scholar] [PubMed]
- Rochette, L.; Dogon, G.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Feroptosis. Int. J. Mol. Sci. 2022, 24, 449. [Google Scholar]
- Kontoghiorghes, C.N.; Kontoghiorghes, G.J. Iron Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020, 9, 1456. [Google Scholar] [CrossRef]
- Haki, M.; AL-Biati, H.A.; Al-Tameemi, Z.; Ali, I.; Al-hussaniy, H.A. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine 2024, 103, e37297. [Google Scholar]
- John, N.A.; Solanky, B.S.; De Angelis, F.; Parker, R.A.; Weir, C.J.; Stutters, J.; Carrasco, F.P.; Schneider, T.; Doshi, A.; Calvi, A.; et al. Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments. J. Magn. Reson. Imaging 2024, 59, 2192–2201. [Google Scholar]
- Juchem, C.; Swanberg, K.M.; Prinsen, H.; Pelletier, D. In vivo cortical glutathione response to oral fumarate therapy in relapsing-remitting multiple sclerosis: A single-arm open-label phase IV trial using 7-Tesla 1H MRS. Neuroimage Clin. 2023, 39, 103495. [Google Scholar]
- Goldstein, A.; Covington, B.; Mahabadi, N.; Mesfin, F. Neuroanatomy, Corpus Callosum; Stat Pearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Khasawneh, R. The Impact of Multiple Sclerosis on the Size and Morphology of Corpus Callosum: An MRI-Based Retrospective Study. Int. J. Morphol. 2023, 41, 417–422. [Google Scholar]
- Brusini, I.; Platten, M.; Ouellette, R.; Piehl, F.; Wang, C.; Granberg, T. Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis. Clin. Investig. Study 2021, 32, 459–470. [Google Scholar]
- Sotgiu, M.A.; Piga, G.; Mazzarello, V.; Zarbo, I.R.; Carta, A.; Saderi, L.; Sotgiu, S.; Conti, M.; Saba, L.; Crivelli, P. Corpus callosum volumetrics and clinical. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 225–231. [Google Scholar] [PubMed]
- Platten, M.; Brusini, I.; Andersson, O.; Ouellette, R.; Piehl, F.; Wang, C.; Granberg, T. Deep Learning Corpus Callosum Segmentation as a Neurodegenerative Marker in Multiple Sclerosis. Clin. Investig. Study 2021, 31, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Ouellette, R.; Herranz, E.; Barletta, V.; Treaba, C.; Mainero, C.; Granberg, T. Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. J. Neuroimaging 2022, 32, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in multiple sclerosis. Wires Mech. Dis. 2022, 15, e1583. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Muguruza, E.; Matute, C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int. J. Mol. Sci. 2023, 24, 12912. [Google Scholar] [CrossRef]
- Poon, M.M.; Lorrain, K.I.; Stebbins, K.J.; Edu, G.C.; Broadhead, A.R.; Lorenzana, A.J.; Roppe, J.R.; Baccei, J.M.; Baccei, C.S.; Chen, A.C.; et al. Targeting the muscarinic M1 receptor with a selective, brain-penetrant antagonist to promote remyelination in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2024, 121, e2407974121. [Google Scholar] [CrossRef]
- Shadab, A.; Abbasi-Kolli, M.; Sahirkhiz, M.; Ahadi, S.; Shokouhi, B.; Nahand, J. The interplay between mitochondrial dysfunction and NLRP3 inflammasome in multiple sclerosis: Therapeutic implications and animal model studies. Biomed. Pharmacother. 2024, 175, 116673. [Google Scholar] [CrossRef]
- Picone, P.; Nuzzo, D. Promising Treatment for Multiple Sclerosis: MItochondrial Transplantation. Int. J. Mol. Sci. 2022, 23, 2245. [Google Scholar] [CrossRef]
- Yong, V. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022, 110, 3534–3548. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A. Treatment of Multiple sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390. [Google Scholar] [CrossRef]
- Tarlinton, R.E.; Martynova, E.; Rizvanov, A.A.; Khaiboullina, S.; Verma, S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020, 12, 643. [Google Scholar] [CrossRef] [PubMed]
- Stewart, N.J.; Sato, T.; Takeda, N.; Hirata, H.; Matsumoto, S. Hyperpolarized C-13 Magnetic Resonance Imaging as a tool for Imaging Tissue Redox State, oxidative Stress, Inflammation, and Cellular Metabolism. Antioxid. Redox Signal. 2022, 36, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med. 2023, 29, 75–85. [Google Scholar] [PubMed]
- Brown, C.; McKee, C.; Halassy, S.; Kojan, S.; Feinstein, D.L.; Chaudhry, G.R. Neural stem cells derived from primitive mesenchymal stem cells reversed disease symptoms and promoted neurogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Stem Cell Ther. Res. 2021, 12, 499. [Google Scholar] [CrossRef]
- Leone, M.A.; Gelati, M.; Profico, D.C.; Gobbi, C.; Pravatà, E.; Copetti, M.; Conti, C.; Abate, L.; Amoruso, L.; Apollo, F.; et al. Phase I clinical trial of intracerebroventricular transplantation of allogeneic neural stem cells in people with progressive multiple sclerosis. Cell Stem Cell 2023, 30, 1597–1609. [Google Scholar]
- Muñoz-Jurado, A.; Escribano, B.M.; Caballero-Villarraso, J.; Galván, A.; Agüera, E.; Santamaría, A.; Túnez, I. Melatonin and multiple sclerosis: Antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022, 30, 1569–1596. [Google Scholar]
- Anderson, G.; Rodriguez, M. Multiple sclerosis: The role of melatonin and N-acetylserotonin. Mult. Scler. Relat. Disord. 2015, 4, 112–123. [Google Scholar]
- Moravejolahkami, A.R.; Chitsaz, A.; Hassanzadeh, A.; Paknahad, Z. Anti-inflammatory-antioxidant modifications and synbiotics improved health-related conditions in patients with progressive forms of multiple sclerosis: A single-center, randomized clinical trial. Complement. Ther. Clin. Pract. 2023, 53, 101794. [Google Scholar] [CrossRef]
- Monreal, E.; Fernández-Velasco, J.I.; Álvarez-Lafuente, R.; Sainz de la Maza, S.; García-Sánchez, M.I.; Llufriu, S.; Casanova, B.; Comabella, M.; Martínez-Yélamos, S.; Galimberti, D.; et al. Serum biomarkers at disease onset for personalized therapy in multiple sclerosis. Brain 2024, 147, 4084–4093. [Google Scholar]
- Maglio, G.; D’Agostino, M.; Caronte, F.P.; Pezone, L.; Casamassimi, A.; Rienzo, M.; Di Zazzo, E.; Nappo, C.; Medici, N.; Molinari, A.M.; et al. Multiple Sclerosis: From the Application of Oligoclonal Bands to Novel Potential Biomarkers. Int. J. Mol. Sci. 2024, 25, 5412. [Google Scholar] [CrossRef]
- Okuda, D.T.; Lebrun-Frénay, C. Radiologically isolated syndrome in the spectrum of multiple sclerosis. Mult. Scler. 2024, 30, 630–636. [Google Scholar] [PubMed]
- Lomer, N.B.; Asalemi, K.A.; Saberi, A.; Sarlak, K. Predictors of multiple sclerosis progression: A systematic review of conventional magnetic resonance imaging studies. PLoS ONE 2024, 19, e0300415. [Google Scholar]
- Giovannoni, G.; Hawkes, C.H.; Lechner-Scott, J.; Levy, M.; Yeh, E.A. Smouldering-associated worsening or SAW: The next therapeutic challenge in managing multiple sclerosis. Mult. Scler. Relat. Disord. 2024, 92, 106194. [Google Scholar] [PubMed]
Name of the Article | Biomarkers Found in the Article |
---|---|
Immunolgy and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach, Ortiz G, 2013 [3] | NT and HNE ↑ in astrocytes and macrophages, ↑ plasma levels of cholesteryl ester hydroperoxide, oxidized LDL and other lipids ↑, pentane, ethane, MDA, and isoprostane ↑ in cerebrospinal fluid, NT ↑ in active lesions, SOD, CAT, NADH-2s and HO ↑ in the lesion, in astrocytes and macrophages, paraoxonase↓ (protective enzyme that hydrolyzes oxidized lipids) in the plasma, ↑ UA in lesions, GSH and α-tocopherol, ↑ activity of GR and GSHPx, ↑ UA in the cerebrospinal fluid, xanthine and hypoxanthine ↑ In the relapsing-remitting form, ↑ NO3, NO2, MDA and 4-HNE in the serum. iNOS ↑ in the lesions and CSF |
Oxidative stress in multiple sclerosis-Emerging imaging techniques, Hollen C, 2022 [14] | ↑ MDA in blood and cerebrospinal fluid, ↓ albumin in blood, ↑ 8-iso-PGF 2α in urine and cerebrospinal fluid, GSH 10-fold ↑ in the cells, ↓ GSH in the cerebrospinal fluid |
Oxidative stress in multiple sclerosis: Central and peripheral mode of action, Ohl K, 2016 [12] | In the urine 8-isoPGF2α ↑, in the blood ↓ ferroxidase activity, ↓ antioxidant capacity, ↑ AOPP, ↓ SH, ↑ co Q10 and anti-oxLDL antibodies |
Oxidative stress-related risk of the multiple sclerosis development, Vasic M, 2023 [15] | Measured: TAS, TOS, OSI, 8-oxo-dG and its relationship with creatinine, relationship with cigarette smoking Women ↑ risk associated with smoking, ↑oxidative markers, antioxidants ↓ compared to men, smokers ↑ oxidative markers |
Evaluation of Selected Oxidant/Antioxidant Parameters in Patients with Relapsing-Remitting Multiple Sclerosis Undergoing Diesase-Modifying Therapies, Bizon A, 2022 [16] | Measured: SOD, GSHPx, CAT, IL-6, lipid peroxidation parameters, TAS, TOS IL-6, NO2, CAT ↑, and GSHPx (an enzyme that, together with catalase, converts hydrogen peroxide into water) ↓ in the relapsing-remitting form. In men, TAS ↑ compared to women, and CAT activity ↓ |
Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies, Song T, 2022 [17] | Myoinositol is a marker of glial cells and is actually part of the lipid layer membrane, participating in the formation of phosphatidyl inositol, which is a secondary messenger. ↑ myoinositol in both multiple sclerosis and Alzheimer’s disease |
Exploring the Relationship between Antioxidant Enzimes. Oxidative Stress Markers, and Clinical profile in Relapsing -Remitting Multiple Sclerosis, Bizon A, 2023 [18] | Measured: AOPP and FRAP in patients with relapsing-remitting multiple sclerosis. AOPP ↑, and more so in men. There is a connection between AOPP and leukocyte count and CRP. The highest AOPP value was in those treated with GA and IFN β, while the lowest value was in those treated with DMF. There is a hint of differences due to sex hormones |
Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy, Burgetova A, 2022 [19] | In the cerebrospinal fluid, the following were measured: 8-OHdG,8-iso-PG, NGAL, PRDX-2, MDA, HAE. ↑ of 8-OHdG, PRDX2, MDA and HAE. 8-isoPG is significantly higher in the secondary progressive form of the disease, while initially this increase is smaller; here, it correlates negatively with the susceptibility of the globus pallidus externus. NGAL ↑ in progressive forms, NA ↓ it |
Oxidative Stress marker Aberrrations in Multiple Sclerosis: A Meta-Analysis Study, Zhang S.-Y, 2020 [20] | Measured: SOD, MDA, GSH, TAS, TOS, CRP, Tg, albumin, AOPP, CAT, hydroxyguanosine, UA, ceruloplasmin, Tf, LDL, and chol. MDA and lipid hydroperoxide ↑, albumin ↓. Only ↑ MDA in the cerebrospinal fluid |
Mitochondrial and metabolic disfunction of peripheral immune cells in multiple sclerosis, Wang P.-F, 2024 [21] | DMF ↓ intracellular GSH, ↑ free radical levels and ↓ oxygen utilization. In the CSF, memory B cells produce ↑ chol |
Blood biomarkers fro assessment of mitochondrial dysfunction: An expert review, Hubens W, 2022 [22] | Biomarkers suggested: Pcr and AC |
Mitochondrial dysfunction in neurodegenerative disorders, Klemmensen M.M, 2024 [23] | Measured: serum Fr ↑, LF ↑ |
Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics, Nesma A.M. Ghonimi, 2021 [24] | MDA ↑ during relapse. In patients taking IFN β, this parameter is ↓ and correlates significantly with expanded disability status scale (EDSS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delic, S.; Miletic Drakulic, S.; Stepovic, M.; Milosavljevic, J.; Kovacevic Dimitrijevic, M.; Jovanovic, K.; Marinkovic, I.; Tepavcevic, M.; Janicijevic, N.; Mitrovic, A.; et al. The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review. NeuroSci 2025, 6, 23. https://doi.org/10.3390/neurosci6010023
Delic S, Miletic Drakulic S, Stepovic M, Milosavljevic J, Kovacevic Dimitrijevic M, Jovanovic K, Marinkovic I, Tepavcevic M, Janicijevic N, Mitrovic A, et al. The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review. NeuroSci. 2025; 6(1):23. https://doi.org/10.3390/neurosci6010023
Chicago/Turabian StyleDelic, Simonida, Svetlana Miletic Drakulic, Milos Stepovic, Jovana Milosavljevic, Marija Kovacevic Dimitrijevic, Kristijan Jovanovic, Ivona Marinkovic, Melanija Tepavcevic, Nikoleta Janicijevic, Aleksandra Mitrovic, and et al. 2025. "The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review" NeuroSci 6, no. 1: 23. https://doi.org/10.3390/neurosci6010023
APA StyleDelic, S., Miletic Drakulic, S., Stepovic, M., Milosavljevic, J., Kovacevic Dimitrijevic, M., Jovanovic, K., Marinkovic, I., Tepavcevic, M., Janicijevic, N., Mitrovic, A., Igrutinovic, D., & Vulovic, M. (2025). The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review. NeuroSci, 6(1), 23. https://doi.org/10.3390/neurosci6010023