Do Pain and Autonomic Regulation Share a Common Central Compensatory Pathway? A Meta-Analysis of HRV Metrics in Pain Trials
Abstract
1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Collection and Extraction
2.4.1. Intervention Measure
2.4.2. Outcome Measures
Author, Year | Country | N Subjects (Interv/Total) | Study Design | Age * | Female (%) | BMI (kg/m2) * | Diagnosis | Intervention | Comparator | Type of Pain (Duration) | Pain Scale | Assessment Period |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bácker M, 2008 [24] | Germany | 9/19 | Parallel | 43.5 ± 8.5 | 15 (88.2) | n/r | Migraine | Acupuncture | Sham | Acute | PDI | Baseline and 12 weeks |
Berry M, 2014 § [25] | USA | 8/14 | Pilot | 41.8 ± 6.6 | 1 (12) | n/r | Chronic pain | Biofeedback | No intervention | Chronic | BPI | Baseline and 4 weeks |
Buttagat V, 2021 [26] | Thailand | 18/36 | Parallel | 22.9 ± 3.4 | 11 (61.11) | 20.3 | Back pain associated with myofascial pain syndrome | Thai massage | No intervention | Chronic | VAS | Baseline and immediate post-intervention |
Cerritelli F, 2021 [27] | Italy | 15/30 | Parallel | 42.3 ± 7.3 | 7 (40) | 24.1 ± 3.5 | Low back pain | Osteopathic manipulative treatment | Sham | Chronic | VAS | Baseline, immediate (T1), and sustained response (T2), 4 wks. |
Espejo-Antúnez L, 2021 [28] | Switzerland | 25/49 | Parallel | 37.0 ± 6.6 | 0 (0) | 25.21 ± 2.8 | Low back pain | Interferential current therapy | Sham | Chronic | NPRS | Baseline and Immediate effect |
Fernández-Morales C, 2024 § [29] | Spain | 14/31 | Pilot | 24.0 ± 5.5 | n/r | 24.0 ± 1.4 | Flight-related neck pain | Physical therapy | No intervention | Acute | NPRS | Baseline and 4 wks, 8 sessions |
Hu X, 2021 [30] | China | 50/100 | Parallel | 50.8 ± 15.3 | 28 (56) | 24.8 ± 2.4 | Chronic non-specific low back pain (CNSLBP) | Silver needle therapy | No intervention | Chronic | NRS | Baseline, 1, 2, 3, and 6 months |
Jiang W, 2011 [31] | USA | 20/40 | Parallel | 55.1 ± 14.4 | 9 (45) | 31.00 ± 8.1 | Painful diabetic neuropathy | Pregabalin | Placebo | Chronic | VAS | Baseline and 4 wks |
Liao CD, 2017 [32] | Taiwan | 22/44 | Parallel | 50.78 ± 8.08 | 17 (77.3) | 21.96 ± 2.31 | Neuropathic pain | Stellate ganglion irradiation | Sham | Chronic | VAS | Baseline and 6 wks, 12 sessions |
Matsubara T, 2011 * [33] | Japan | 11/33 | Parallel | 35.5 ± 6.4 | 11 (100%) | n/r | Neck Pain | Local acupuncture | No intervention | Chronic | VRS | Baseline and Immediate effect |
Matsubara T, 2011 * [33] | Japan | 11/33 | Parallel | 37.2 ± 7.0 | 11 (100%) | n/r | Neck Pain | Distal acupuncture | No intervention | Chronic | VRS | Baseline and Immediate effect |
Moreira RM, 2023 § [34] | Brazil | 9/18 | Pilot | 58 ± 9.89 | 9 (100) | 28.27 ± 3.54 | Fibromyalgia | Acupuncture | No intervention | Chronic | NPRS | Baseline and 6 wks, 6 sessions |
Olliges E, 2024 * [35] | Germany | 21/60 | Parallel | 64.19 ± 9.3 | 12 (42.8) | n/r | Knee Osteoarthritis | OLP-pain | No intervention | Chronic | NRS | Baseline and 3 weeks |
Olliges E, 2024 * [35] | Germany | 20/60 | Parallel | 66.8 ± 9.7 | 9 (45) | n/r | Knee Osteoarthritis | OLP-mood | No intervention | Chronic | NRS | Baseline and 3 weeks |
Paccione CE, 2022 * [36] | France | 28/116 | Parallel | 48.25 ± 8.88 | 27 (96.4) | 29.26 ± 6.49 | Fibromyalgia | Active tVNS | Sham | Chronic | NRS | Baseline and 2 weeks |
Paccione CE, 2022 * [36] | France | 29/116 | Parallel | 48.25 ± 8.88 | 27 (96.4) | 29.26 ± 6.49 | Fibromyalgia | Active MDB | Sham | Chronic | NRS | Baseline and 2 weeks |
Patel ABU, 2023 [37] | UK | 43/86 | Parallel | 47 (33 to 54) | 17 (39.6) | n/r | Perioperative pain after orthopedic surgery | Transcutaneous auricular nerve stimulation | Sham | Acute | VAS | Baseline (before surgery) and After surgery |
Paz T, 2023 * [38] | Brazil | 20/58 | Parallel | 40 ± 17 | 15 (75) | n/r | Musculoskeletal pain | Spinal Manipulation | Placebo | Chronic | NRS | Baseline and Immediate effect |
Paz T, 2023 * [38] | Brazil | 19/58 | Parallel | 48 ± 11 | 13 (68) | n/r | Musculoskeletal pain | Myofascial Manipulation | Placebo | Chronic | NRS | Baseline and Immediate effect |
Prim JH, 2019 †,§ [39] | USA | 20/20 | Pilot-Crossover | 43 ± 13.37 | 12 (60) | 25.94 ± 4.46 | CLBP | Transcranial alternating current stimulation | Placebo | Chronic | DVPRS | Baseline and Immediate effect |
Toro-Velasco C, 2009 † [40] | Spain | 11/11 | Crossover | 51 ± 15 | 8 (60) | n/r | CTTH | Head-neck massage | Placebo | Chronic | NPRS | Baseline, Immediate and after 24 h, 2 sessions |
Warth M, 2015 [41] | Germany | 42/42 | Parallel | 63.8 ± 14.1 | 28 (66.7) | n/r | Palliative care pain | Music therapy | No intervention | Acute | VAS | Baseline and at 48 h after 2 sessions. |
Wong A, 2017 [42] | Korea | 17/31 | Parallel | 51 ± 2 | 18 (100) | 23.1 ± 0.5 | Fibromyalgia | Tai Chi | No intervention | Chronic | VAS | Baseline and 12 weeks |
Xuan J, 2022 [43] | China | 21/42 | Parallel | 51.14 ± 8.66 | 7 (33.3) | 25.07 ± 3.77 | Pancreatitis pain | Transcutaneous electrical acustimulation | Sham | Acute | VAS | Baseline and 48 h |
Yamamoto K, 2011 § [44] | Japan | 9/18 | Pilot | n/r | 3 (33) | n/r | Incurable stomach cancer during palliative care for pain | WW-Footbath Method | No intervention | Chronic | VAS | Baseline and Immediate effect |
Yeh ML, 2018 [45] | Taiwan | 39/80 | Parallel | 55.64 ± 14.83 | 24 (61.5) | n/r | Post-operative pain in hemorrhoidectomy | Transcutaneous acupoint electrical stimulation | No intervention | Acute | VAS | Baseline and after 4 sessions |
Younes M, 2017 [46] | France | 10/17 | Parallel | 31 ± 9 | 0 (0) | 23.67 ± 4.34 | Low back pain | Spinal manipulative treatment | Sham | Acute | NPRS | Baseline and immediate effect, 2 sessions |
2.5. Risk of Bias Assessment
2.6. Heterogeneity Assessment
2.7. Data Analysis
3. Results
3.1. Study Selection
3.2. Time-Domain Measures
3.3. Frequency-Domain Measures
3.4. One-Group Meta-Analysis (The Combined Effect of the Intervention)
3.5. Meta-Regression
3.6. Individual Results: Most Effective Interventions to Modulate HRV
3.7. Risk of Bias
4. Discussion
4.1. Do HRV Parameters Significantly Differ Between Active and Sham Treatment Groups?
4.2. Are HRV Changes More Pronounced Within the Active Group (Pre- vs. Post-Intervention), Reflecting Both Specific and Non-Specific (Placebo) Effects?
4.3. Are Specific Types of Interventions More Likely to Modulate HRV?
4.4. Are the Observed HRV Changes Moderated by Markers Such as BMI, Which Could Reflect Systemic Inflammation?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, S.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Rice, A.S.; Smith, B.H.; Blyth, F.M. Pain and the global burden of disease. PAIN® 2016, 157, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Wilkie, R.; Uthman, O.; Jordan, J.L.; McBeth, J.; Zaykin, D. Chronic Pain and Mortality: A Systematic Review. PLoS ONE 2014, 9, e99048. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.J.; Barnish, M.S.; Jones, G.T. Persons with chronic widespread pain experience excess mortality: Longitudinal results from UK Biobank and meta-analysis. Ann. Rheum. Dis. 2017, 76, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Georgiou-Karistianis, N.; Giummarra, M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. PAIN® 2016, 157, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Barretto, A.C.H.; Mota, L.M.H.; Argolo, F.C. Autonomic dysfunction in rheumatoid arthritis: Frequency, relation with disease activity, and cardiovascular risk factors. Front. Med. 2021, 8, 742841. [Google Scholar] [CrossRef]
- Meeus, M.; Goubert, D.; De Backer, F.; Struyf, F.; Hermans, L.; Coppieters, I.; De Wandele, I.; Da Silva, H.; Calders, P. Heart rate variability in patients with fibromyalgia and patients with chronic fatigue syndrome: A systematic review. Semin. Arthritis Rheum. 2013, 43, 279–287. [Google Scholar] [CrossRef]
- Thanou, A.; Stavrakis, S.; Dyer, J.W.; Munroe, M.E.; James, J.A.; Merrill, J.T. Impact of heart rate variability, a marker for cardiac health, on lupus disease activity. Arthritis Res. Ther. 2016, 18, 197. [Google Scholar] [CrossRef]
- Aydemir, M.; Yazisiz, V.; Basarici, I.; Avci, A.; Erbasan, F.; Belgi, A.; Terzioglu, E. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus. Lupus 2009, 19, 255–261. [Google Scholar] [CrossRef]
- Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef]
- Holman, A.J.; Ng, E. Heart rate variability predicts anti-tumor necrosis factor therapy response for inflammatory arthritis. Auton. Neurosci. 2008, 143, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Adlan, A.M.; Paton, J.F.R.; Lip, G.Y.H.; Kitas, G.D.; Fisher, J.P. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J. Physiol. 2016, 595, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Danilin, L.K.; Spindler, M.; Sörös, P.; Bantel, C. Heart rate and heart rate variability in patients with chronic inflammatory joint disease: The role of pain duration and the insular cortex. BMC Musculoskelet. Disord. 2022, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Koop, S.M.W.; Klooster, P.M.T.; Vonkeman, H.E.; Steunebrink, L.M.M.; van de Laar, M.A.F.J. Neuropathic-like pain features and cross-sectional associations in rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 237. [Google Scholar] [CrossRef]
- Mayer, E.A.; Labus, J.S.; Tillisch, K.; Cole, S.W.; Baldi, P. Towards a systems view of IBS. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 592–605. [Google Scholar] [CrossRef]
- Koenig, J.; Williams, D.P.; Kemp, A.H.; Thayer, J.F. Vagally mediated heart rate variability in headache patients—A systematic review and meta-analysis. Cephalalgia 2015, 36, 265–278. [Google Scholar] [CrossRef]
- Forte, G.; Troisi, G.; Pazzaglia, M.; De Pascalis, V.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef]
- Littlejohn, G.; Guymer, E. Neurogenic inflammation in fibromyalgia. Semin. Immunopathol. 2018, 40, 291–300. [Google Scholar] [CrossRef]
- Ji, R.-R.; Chamessian, A.; Zhang, Y.-Q. Pain regulation by non-neuronal cells and inflammation. Science 2016, 354, 572–577. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Malik, M. Task Force of the European Society of Cardiology, and the North American Electrophysiology Society of Pacing and Electrophysiology. Guidelines heart rate variability. Eur. Heart. J. 1996, 93, 354–381. [Google Scholar] [CrossRef]
- Hopf, H.-B.; Skyschally, A.; Heusch, G.; Peters, J. Low-frequency Spectral Power of Heart Rate Variability Is Not a Specific Marker of Cardiac Sympathetic Modulation. Anesthesiology 1995, 82, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Bäcker, M.; Grossman, P.; Schneider, J.; Michalsen, A.; Knoblauch, N.; Tan, L.; Niggemeyer, C.; Linde, K.; Melchart, D.; Dobos, G.J. Acupuncture in Migraine. Clin. J. Pain 2008, 24, 106–115. [Google Scholar] [CrossRef]
- Berry, M.E.; Chapple, I.T.; Ginsberg, J.P.; Gleichauf, K.J.; Meyer, J.A.; Nagpal, M.L. Non-pharmacological Intervention for Chronic Pain in Veterans: A Pilot Study of Heart Rate Variability Biofeedback. Glob. Adv. Health Med. 2014, 3, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Buttagat, V.; Eungpinichpong, W.; Chatchawan, U.; Kharmwan, S. The immediate effects of traditional Thai massage on heart rate variability and stress-related parameters in patients with back pain associated with myofascial trigger points. J. Bodyw. Mov. Ther. 2011, 15, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Saggini, R.; Perrucci, M.G.; Ferretti, A. Osteopathy modulates brain–heart interaction in chronic pain patients: An ASL study. Sci. Rep. 2021, 11, 4556. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; Fernández-Morales, C.; de Los Ángeles Cardero-Durán, M.; Toledo-Marhuenda, J.V.; Díaz-Mancha, J.A.; Albornoz-Cabello, M. Detection of Changes on Parameters Related to Heart Rate Variability after Applying Current Interferential Therapy in Subjects with Non-Specific Low Back Pain. Diagnostics 2021, 11, 2175. [Google Scholar] [CrossRef]
- Fernández-Morales, C.; Espejo-Antúnez, L.; de Los Ángeles Cardero-Durán, M.; Falla, D.; Moreno-Vázquez, J.M.; Albornoz-Cabello, M.; Pontes-Silva, A. Psychophysiological responses to a multimodal physiotherapy program in fighter pilots with flight-related neck pain: A pilot trial. PLoS ONE 2024, 19, e0306708. [Google Scholar] [CrossRef]
- Hu, X.; Dong, S.; Zhang, B.; Wang, X.; Yin, Y.; Liu, C.; Yu, J.; Wu, X.; Xu, F.; Meng, C. Efficacy of silver needle therapy for the treatment of chronic nonspecific low back pain: A prospective, single-center, randomized, parallel-controlled clinical trial. Trials 2021, 22, 75. [Google Scholar] [CrossRef]
- Jiang, W.; Ladd, S.; Martsberger, C.; Feinglos, M.; Spratt, S.E.; Kuchibhatla, M.; Green, J.; Krishnan, R. Effects of Pregabalin on Heart Rate Variability in Patients With Painful Diabetic Neuropathy. J. Clin. Psychopharmacol. 2011, 31, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-D.; Rau, C.-L.; Liou, T.-H.; Tsauo, J.-Y.; Lin, L.-F. Effects of Linearly Polarized Near-Infrared Irradiation Near the Stellate Ganglion Region on Pain and Heart Rate Variability in Patients with Neuropathic Pain. Pain Med. 2016, 18, 488–503. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Arai, Y.-C.P.; Shiro, Y.; Shimo, K.; Nishihara, M.; Sato, J.; Ushida, T. Comparative Effects of Acupressure at Local and Distal Acupuncture Points on Pain Conditions and Autonomic Function in Females with Chronic Neck Pain. Evid.-Based Complement. Altern. Med. 2010, 2011, 543291. [Google Scholar] [CrossRef]
- Moreira, R.M.; Rosário, R.C.; Boggiss, É.A.; de Lima, R.A.; Silva, P.A.; da Silva, K.P.; de Farias, C.L.; de Queiroz Dos Santos, V.; da Silva, J.R.T.; Simões, R.P.; et al. Effect of Systemic and Auricular Acupuncture with a 2/100 Hz Frequency and Nogier Frequency in Fibromyalgia: A Randomized Clinical Trial, Pilot Study. J. Acupunct. Meridian Stud. 2023, 16, 139–151. [Google Scholar] [CrossRef]
- Olliges, E.; Stroppe, S.; Haile, A.; Reiß, F.; Malhis, M.; Funke, S.A.; Meissner, K. Open-Label Placebo Administration Decreases Pain in Elderly Patients With Symptomatic Knee Osteoarthritis—A Randomized Controlled Trial. Front. Psychiatry 2022, 13, 853497. [Google Scholar] [CrossRef] [PubMed]
- Paccione, C.E.; Stubhaug, A.; Diep, L.M.; Rosseland, L.A.; Jacobsen, H.B. Meditative-based diaphragmatic breathing vs. vagus nerve stimulation in the treatment of fibromyalgia—A randomized controlled trial: Body vs. machine. Front. Neurol. 2022, 13, 1030927. [Google Scholar] [CrossRef]
- Patel, A.B.; Bibawy, P.P.M.; Althonayan, J.I.M.; Majeed, Z.; Gan, W.L.; Abbott, T.E.; Ackland, G.L. Effect of transauricular nerve stimulation on perioperative pain: A single-blind, analyser-masked, randomised controlled trial. Br. J. Anaesth. 2023, 130, 468–476. [Google Scholar] [CrossRef]
- da Silva Rocha Paz, T.; Rodrigues, P.T.V.; Silva, B.M.; de Sá Ferreira, A.; Nogueira, L.A.C. Mediation Analysis in Manual Therapy Research. J. Chiropr. Med. 2022, 22, 35–44. [Google Scholar] [CrossRef]
- Prim, J.H.; Ahn, S.; I Davila, M.; Alexander, M.L.; McCulloch, K.L.; Fröhlich, F. Targeting the Autonomic Nervous System Balance in Patients with Chronic Low Back Pain Using Transcranial Alternating Current Stimulation: A Randomized, Crossover, Double-Blind, Placebo-Controlled Pilot Study. J. Pain Res. 2019, 12, 3265–3277. [Google Scholar] [CrossRef]
- Toro-Velasco, C.; Arroyo-Morales, M.; Fernández-De-Las-Peñas, C.; Cleland, J.A.; Barrero-Hernández, F.J. Short-Term Effects of Manual Therapy on Heart Rate Variability, Mood State, and Pressure Pain Sensitivity in Patients with Chronic Tension-Type Headache: A Pilot Study. J. Manip. Physiol. Ther. 2009, 32, 527–535. [Google Scholar] [CrossRef]
- Warth, M.; Keßler, J.; Hillecke, T.K.; Bardenheuer, H.J. Music Therapy in Palliative Care. Dtsch. Aerzteblatt Online 2015, 112, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Figueroa, A.; Sanchez-Gonzalez, M.A.; Son, W.-M.; Chernykh, O.; Park, S.-Y. Effectiveness of Tai Chi on Cardiac Autonomic Function and Symptomatology in Women With Fibromyalgia: A Randomized Controlled Trial. J. Aging Phys. Act. 2018, 26, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Zhu, Y.; Xu, W.; Zhao, H.; Chen, J.D.Z.; Wu, G.; Gong, L. Integrative effects of transcutaneous electrical acustimulation on abdominal pain, gastrointestinal motility, and inflammation in patients with early-stage acute pancreatitis. Neurogastroenterol. Motil. 2021, 34, e14249. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nagata, S. Physiological and Psychological Evaluation of the Wrapped Warm Footbath as a Complementary Nursing Therapy to Induce Relaxation in Hospitalized Patients With Incurable Cancer. Cancer Nurs. 2011, 34, 185–192. [Google Scholar] [CrossRef]
- Yeh, M.-L.; Chung, Y.-C.; Hsu, L.-C.; Hung, S.-H. Effect of Transcutaneous Acupoint Electrical Stimulation on Post-Hemorrhoidectomy-Associated Pain, Anxiety, and Heart Rate Variability: A Randomized-Controlled Study. Clin. Nurs. Res. 2017, 27, 450–466. [Google Scholar] [CrossRef]
- Younes, M.; Nowakowski, K.; Didier-Laurent, B.; Gombert, M.; Cottin, F. Effect of spinal manipulative treatment on cardiovascular autonomic control in patients with acute low back pain. Chiropr. Man. Ther. 2017, 25, 33. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef]
- Quintana, D.S.; A Alvares, G.; Heathers, J.A.J. Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): Recommendations to advance research communication. Transl. Psychiatry 2016, 6, e803. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J., III; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hohenschurz-Schmidt, D.J.; Calcagnini, G.; Dipasquale, O.; Jackson, J.B.; Medina, S.; O’dAly, O.; O’mUircheartaigh, J.; de Lara Rubio, A.; Williams, S.C.R.; McMahon, S.B.; et al. Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks. Front. Neurosci. 2020, 14, 147. [Google Scholar] [CrossRef]
- Kaptchuk, T.J.; Miller, F.G. Placebo Effects in Medicine. N. Engl. J. Med. 2015, 373, 8–9. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Barsky, A.J.; Ropper, A.H. Placebo and Nocebo Effects. N. Engl. J. Med. 2020, 382, 554–561. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- von Rosenberg, W.; Chanwimalueang, T.; Adjei, T.; Jaffer, U.; Goverdovsky, V.; Mandic, D.P. Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Front. Physiol. 2017, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.D.; Atlas, L.Y. The neuroscience of placebo effects: Connecting context, learning and health. Nat. Rev. Neurosci. 2015, 16, 403–418. [Google Scholar] [CrossRef]
- Benedetti, F.; Frisaldi, E.; Carlino, E.; Giudetti, L.; Pampallona, A.; Zibetti, M.; Lanotte, M.; Lopiano, L. Teaching neurons to respond to placebos. J. Physiol. 2016, 594, 5647–5660. [Google Scholar] [CrossRef]
- Moyer, C.A.; Rounds, J.; Hannum, J.W. A Meta-Analysis of Massage Therapy Research. Psychol. Bull. 2004, 130, 3–18. [Google Scholar] [CrossRef]
- Melzack, R.; Wall, P.D. Pain Mechanisms: A New Theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Nijs, J.; Van Houdenhove, B. From acute musculoskeletal pain to chronic widespread pain and fibromyalgia: Application of pain neurophysiology in manual therapy practice. Man. Ther. 2009, 14, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, C.; Ponsford, J.; Williams, G.; Kahn, M.; McKay, A. Factors Affecting Participation in Physical Therapy During Posttraumatic Amnesia. Arch. Phys. Med. Rehabil. 2021, 102, 378–385. [Google Scholar] [CrossRef]
- Gianlorenço, A.C.; Pacheco-Barrios, K.; Daibes, M.; Camargo, L.; Choi, H.; Song, J.-J.; Fregni, F. Age as an Effect Modifier of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) on Heart Rate Variability in Healthy Subjects. J. Clin. Med. 2024, 13, 4267. [Google Scholar] [CrossRef]
- Napadow, V.; Dhond, R.; Park, K.; Kim, J.; Makris, N.; Kwong, K.K.; Harris, R.E.; Purdon, P.L.; Kettner, N.; Hui, K.K. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture. NeuroImage 2009, 47, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. Pain-autonomic interactions. Neurol. Sci. 2006, 27, s130–s133. [Google Scholar] [CrossRef]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Lutz, J.; Jäger, L.; de Quervain, D.; Krauseneck, T.; Padberg, F.; Wichnalek, M.; Beyer, A.; Stahl, R.; Zirngibl, B.; Morhard, D.; et al. White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study. Arthritis Rheum. 2008, 58, 3960–3969. [Google Scholar] [CrossRef]
- Molfino, A.; Fiorentini, A.; Tubani, L.; Martuscelli, M.; Fanelli, F.R.; Laviano, A. Body mass index is related to autonomic nervous system activity as measured by heart rate variability. Eur. J. Clin. Nutr. 2009, 63, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Karason, K.; Mølgaard, H.; Wikstrand, J.; Sjöström, L. Heart rate variability in obesity and the effect of weight loss. Am. J. Cardiol. 1999, 83, 1242–1247. [Google Scholar] [CrossRef]
- Williams, D.P.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart rate variability and inflammation: A meta-analysis of human studies. Brain Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 2011, 121, 2111–2117. [Google Scholar] [CrossRef]
- Huston, J.M.; Tracey, K.J. The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 2010, 269, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Varatharaj, A.; Galea, I. The blood-brain barrier in systemic inflammation. Brain Behav. Immun. 2017, 60, 1–12. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Cattaneo, B.M.; Bolla, G.B.; Lanfranchi, A.; Colombo, M.; Giannattasio, C.; Brunani, A.; Cavagnini, F.; Mancia, G. Sympathetic Activation in Obese Normotensive Subjects. Hypertension 1995, 25, 560–563. [Google Scholar] [CrossRef]
- Skrapari, I.; Tentolouris, N.; Perrea, D.; Bakoyiannis, C.; Papazafiropoulou, A.; Katsilambros, N. Baroreflex Sensitivity in Obesity: Relationship with Cardiac Autonomic Nervous System Activity. Obesity 2007, 15, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, G.J.M.; Fregni, F.; Battistella, L.R.; Imamura, M. High Body Mass Index Disrupts the Homeostatic Relationship Between Pain Inhibitory Control and the Symptomatology in Patients with Knee Osteoarthritis—A Cross-Sectional Analysis from the DEFINE Study. NeuroSci 2025, 6, 14. [Google Scholar] [CrossRef]
- Poirier, P.; Hernandez, T.L.; Weil, K.M.; Shepard, T.J.; Eckel, R.H. Impact of Diet-Induced Weight Loss on the Cardiac Autonomic Nervous System in Severe Obesity. Obes. Res. 2003, 11, 1040–1047. [Google Scholar] [CrossRef]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Tick, H. Nutrition and Pain. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 309–320. [Google Scholar] [CrossRef]
- Totsch, S.K.; Waite, M.E.; Sorge, R.E. Dietary influence on pain via the immune system. Prog. Mol. Biol. Transl. Sci. 2015, 131, 435–469. [Google Scholar] [CrossRef]
- Nijs, J.; Yilmaz, S.T.; Elma, Ö.; Tatta, J.; Mullie, P.; Vanderweeën, L.; Clarys, P.; Deliens, T.; Coppieters, I.; Weltens, N.; et al. Nutritional intervention in chronic pain: An innovative way of targeting central nervous system sensitization? Expert Opin. Ther. Targets 2020, 24, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Barrios, K.; Marques, L.M.; Dodurgali, M.R.; Martinez-Magallanes, D.; Barbosa, S.P.; Daibes, M.; Márquez, J.O.; de Melo, P.S.; Simis, M.; Caumo, W.; et al. Seeking Brain Homeostatic Compensatory Mechanisms for Pain Control. Princ. Prace. Clin. Res. J. 2023, 9, 4–6. [Google Scholar] [CrossRef] [PubMed]
ID | Author, Year | HRV Parameters and Metrics | Position | Recording Time | IBI Extraction | Software for Analysis |
---|---|---|---|---|---|---|
1 | Bácker M, 2008 [24] | LF (s2), HF (s/L) | At rest | 2 min | ECG | Matlab (Mathworks, Natick, MA, USA) |
2 | Berry M, 2014 [25] | HRV Coherence Ratio (Hz) | At rest | 10 min | n/r | n/r |
3 | Buttagat V, 2021 [26] | LF (ms2), HF (ms2), LF/HF | n/r | 10 min | ECG | n/r |
4 | Cerritelli F, 2021 [27] | LF (nu), HF (nu), LF/HF | n/r | 5 min | Pulse oximeter | Kubios software |
5 | Espejo-Antúnez L, 2021 [28] | RMSSD | At rest and during intervention | 30 min | Firstbeat Bodyguard® monitor | Kubios® HRV software (v.2.1.) |
6 | Fernández-Morales C, 2024 [29] | LF (ms2), HF (ms2), LF/HF, RMSSD, pNN50 | Prone at rest | 15 min | Firstbeat Bodyguard® monitor | Kubios software |
7 | Hu X, 2021 [30] | LF (ln), HF (ln), LF/HF | n/r | n/r | ZSY-1 Heart Rate Variation Detector, Wegene Technology Inc. (Shenyang, China) | n/r |
8 | Jiang W, 2011 [31] | RMSSD, SDNN, pNN50, LF (nu), HF (nu), LF/HF | Supine at rest | 60 min | ECG | Vivo-VMLA-036-00 3 Logic software |
9 | Liao CD, 2017 [32] | RMSSD, SDNN, LF (ms2), HF (ms2), LF/HF | Supine at rest | 10 min | ANSWatchVR wrist monitor | ANSWatchVR Manager Pro (version 1.94) software. |
10 | Matsubara T, 2011 [33] | LF (ms2), HF (ms2), LF/HF | Supine at rest | 5 min | ECG | HRV analysis software (TARAWA/WIN) |
11 | Moreira RM, 2023 [34] | RMSSD, SDNN, pNN50, LF (ms2), HF (ms2), LF/HF | Supine at rest | 5 min | PolarR RS800CX | Kubios HRV Standard software |
12 | Olliges E, 2024 [35] | HF (%) | n/r | 5 min | ECG | Kubios HRV software version 2.2 |
13 | Paccione CE, 2022 [36] | RMSSD, pNN50, HF (ms2) | Seated at rest | 3 min | Polar H7 | n/r |
14 | Patel ABU, 2023 [37] | RMSSD, SDNN, LF (ms2), HF (ms2) | At rest | 10 min | ECG | n/r |
15 | Paz T, 2023 [38] | RMSSD, LF (ms2), HF (ms2), LF/HF | Supine at rest | 10 min | Polar RS800cx | Kubios software, version 2.2 |
16 | Prim JH, 2019 † [39] | RMSSD, SDNN, LF (ms2), HF (ms2), LF/HF | Seated at rest | 2 min | ECG | MATLAB and CardioBatch software |
17 | Toro-Velasco C, 2009 † [40] | RMSSD, SDNN, LF, HF | Supine at rest | 5 min | ECG | NH300 Software |
18 | Warth M, 2015 [41] | HF (ms2) | n/r | 5 min | n/r | Kubios software version 2.1 |
19 | Wong A, 2017 [42] | LF (ms2), HF (ms2), LF/HF | Supine at rest | 10 min | Polar device SA-2000E model | n/r |
20 | Xuan J, 2022 [43] | LF, HF, LF/HF (metrics n/r) | Supine at rest | 30 min | ECG | n/r |
21 | Yamamoto K, 2011 [44] | HF (ms/Hz), LF/HF | Recumbent position | n/r | ECG | Microsoft Excel (2003) |
22 | Yeh ML, 2018 [45] | LF, HF, LF/HF (metrics n/r) | Sitting position | 5 min | HRVm, 8Z11 | n/r |
23 | Younes M, 2017 [46] | RMSSD, LF (ms2), HF (ms2), LF/HF | Supine at rest | 35 min | ECG | SCILAB (INRIA, France). |
Model | Moderator | HF | LF/HF Ratio | ||||
---|---|---|---|---|---|---|---|
β Coefficient (95%CI) | p-Value | R2 | β Coefficient (95%CI) | p-Value | R2 | ||
Univariate analysis | Age | 0.118 (−0.012, 0.247) | 0.075 | 63.9 | 0.013 (−0.010, 0.035) | 0.278 | 0.2 |
BMI | −0.088 (−0.173, −0.002) | 0.044 | 64.4 | 0.092 (0.009, 0.0174) | 0.029 | 82 | |
Type of pain | 62.1 | 0.0 | |||||
Nociplastic vs. Neuropathic | 29.08 (−69.96, 128.13) | 0.565 | 1.38 (−0.26, 3.01) | 0.098 | |||
Nociceptive vs. Neuropathic | 29.43 (−69.61, 128.48) | 0.560 | 1.479 (0.096, 3.055) | 0.0657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daibes, M.; Almarie, B.; Andrade, M.F.; Vidigal, G.d.P.; Aranis, N.; Gianlorenco, A.; Monteiro, C.B.d.M.; Grover, P.; Sparrow, D.; Fregni, F. Do Pain and Autonomic Regulation Share a Common Central Compensatory Pathway? A Meta-Analysis of HRV Metrics in Pain Trials. NeuroSci 2025, 6, 62. https://doi.org/10.3390/neurosci6030062
Daibes M, Almarie B, Andrade MF, Vidigal GdP, Aranis N, Gianlorenco A, Monteiro CBdM, Grover P, Sparrow D, Fregni F. Do Pain and Autonomic Regulation Share a Common Central Compensatory Pathway? A Meta-Analysis of HRV Metrics in Pain Trials. NeuroSci. 2025; 6(3):62. https://doi.org/10.3390/neurosci6030062
Chicago/Turabian StyleDaibes, Marianna, Bassel Almarie, Maria Fernanda Andrade, Giovanna de Paula Vidigal, Nadine Aranis, Anna Gianlorenco, Carlos Bandeira de Mello Monteiro, Prateek Grover, David Sparrow, and Felipe Fregni. 2025. "Do Pain and Autonomic Regulation Share a Common Central Compensatory Pathway? A Meta-Analysis of HRV Metrics in Pain Trials" NeuroSci 6, no. 3: 62. https://doi.org/10.3390/neurosci6030062
APA StyleDaibes, M., Almarie, B., Andrade, M. F., Vidigal, G. d. P., Aranis, N., Gianlorenco, A., Monteiro, C. B. d. M., Grover, P., Sparrow, D., & Fregni, F. (2025). Do Pain and Autonomic Regulation Share a Common Central Compensatory Pathway? A Meta-Analysis of HRV Metrics in Pain Trials. NeuroSci, 6(3), 62. https://doi.org/10.3390/neurosci6030062