Artificial Intelligence Tools in Surgical Research: A Narrative Review of Current Applications and Ethical Challenges
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Writing Enhancement Tools
3.2. Large Language Models
3.3. Search Engine Optimization Tools
3.4. Image Interpretation and Generation Tools
3.5. Organization and Content Search
3.6. Audio Analysis
3.7. Publication and Collaborative AI Tools
3.8. Ontologies
3.9. Video Generation
4. Discussion
4.1. Limitations
4.2. The Future of AI in Medical Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
COVID-19 | Coronavirus Disease 2019 |
LLM | Large language model |
SEO | Search Engine Optimization |
References
- Cox, A.; Seth, I.; Xie, Y.; Hunter-Smith, D.J.; Rozen, W.M. Utilizing ChatGPT-4 for Providing Medical Information on Blepharoplasties to Patients. Aesthet. Surg. J. 2023, 43, NP658–NP662. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Pillai, A.; Deng, J.; Guo, E.; Gupta, M.; Paget, M.; Naugler, C. Assessing the research landscape and clinical utility of large language models: A scoping review. BMC Med. Inform. Decis. Mak. 2024, 24, 72. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yan, X.; Zhang, K.; Liu, D.; Cui, X.; Yang, Y.; Zhang, M.; Cao, C.; Wang, J.; Wang, X. The application of large language models in medicine: A scoping review. iScience 2024, 27, 109713. [Google Scholar] [CrossRef] [PubMed]
- Goh, E.; Gallo, R.; Hom, J.; Strong, E.; Weng, Y.; Kerman, H.; Cool, J.A.; Kanjee, Z.; Parsons, A.S.; Ahuja, N. Large Language Model Influence on Diagnostic Reasoning: A Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2440969. [Google Scholar] [CrossRef]
- Shah, N.H.; Entwistle, D.; Pfeffer, M.A. Creation and Adoption of Large Language Models in Medicine. JAMA 2023, 330, 866–869. [Google Scholar] [CrossRef]
- Li, Z.; Li, F.; Fu, Q.; Wang, X.; Liu, H.; Zhao, Y.; Ren, W. Large language models and medical education: A paradigm shift in educator roles. Smart Learn. Environ. 2024, 11, 26. [Google Scholar] [CrossRef]
- Patel, S.B.; Lam, K.; Liebrenz, M. ChatGPT: Friend or Foe. Lancet Digit. Health 2023, 5, e102. [Google Scholar] [CrossRef]
- ONeill, R.; Russell, A. Stop! Grammar time: University students’ perceptions of the automated feedback program Grammarly. Australas. J. Educ. Technol. 2019, 35, 42–56, AJET. [Google Scholar] [CrossRef]
- Ananda, M.; Nisa, R.; Safura, S. Students’ perceptions toward the use of Grammarly in checking grammar in assignments. Accent. J. Engl. Lang. Educ. 2021, 1, 72–77. [Google Scholar] [CrossRef]
- Ngo, T.T.-N.; Chen, H.H.-J.; Lai, K.K.-W. The effectiveness of automated writing evaluation in EFL/ESL writing: A three-level meta-analysis. Interact. Learn. Environ. 2024, 32, 727–744. [Google Scholar] [CrossRef]
- ElHawary, H.; Gorgy, A.; Janis, J. Large Language Models in Academic Plastic Surgery: The Way Forward. PRS Glob Open 2023, 11, e4949. [Google Scholar] [CrossRef] [PubMed]
- Rengers, T.A.; Thiels, C.A.; Salehinejad, H. Academic Surgery in the Era of Large Language Models. JAMA Surg. 2024, 159, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Carobene, A.; Padoan, A.; Cabitza, F.; Banfi, G.; Plebani, M. Rising adoption of artificial intelligence in scientific publishing: Evaluating the role, risks, and ethical implications in paper drafting and review process. Clin. Chem. Lab. Med. 2023, 62, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Sanmarchi, F.; Bucci, A.; Nuzzolese, A.G.; Carullo, G.; Toscano, F.; Nante, N.; Golinelli, D. A step-by-step researcher’s guide to the use of an AI-based transformer in epidemiology: An exploratory analysis of ChatGPT using the STROBE checklist for observational studies. Z. Gesundh. Wiss. 2023, 26, 1761–1796. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [Google Scholar] [CrossRef]
- Kormilitzin, A.; Vaci, N.; QiangLiu, Y.; Nevado-Holgado, A. Med7: A transferable clinical natural language processing model for electronic health recordsArtif. Intell. Med. 2021, 118, 102086. [Google Scholar] [CrossRef]
- Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.Y. BioGPT: Generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform. 2022, 23, bbac409. [Google Scholar] [CrossRef]
- Janssen, B.V.; Kazemier, G.; Besselink, M.G. The use of ChatGPT and other large language models in surgical science. BJS Open 2023, 7, zrad032. [Google Scholar] [CrossRef]
- Ray, P.P. Large language models in laparoscopic surgery: A transformative opportunity. Laparosc. Endosc. Rob. Surg. 2024, 7, 174–180. [Google Scholar] [CrossRef]
- Ray, P.P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations, and future scope. Internet Things Cyber-Phys. Syst. 2023, 3, 121–154. [Google Scholar] [CrossRef]
- Bornmann, L. Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. J. Informetr. 2014, 8, 895–903. [Google Scholar] [CrossRef]
- Kvak, D.; Březinová, E.; Biroš, M.; Hrubý, R. Synthetic Data as a Tool to Combat Racial Bias in Medical AI: Utilizing Generative Models for Optimizing Early Detection of Melanoma in Fitzpatrick Skin Types IV–VI. In International Conference on Medical Imaging and Computer-Aided Diagnosis, Leicester, UK, 20–21 November 2024; Lecture Notes in Electrical Engineering; Springer Nature: Singapore, 2022; pp. 317–330. [Google Scholar]
- Schoeb, D.; Suarez-Ibarrola, R.; Hein, S.; Dressler, F.F.; Adams, F.; Schlager, D.; Miernik, A. Use of Artificial Intelligence for Medical Literature Search: Randomized Controlled Trial Using the Hackathon Format. Interact. J. Med. Res. 2020, 9, e16606. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C. Transcription: Imperatives for qualitative research. Int. J. Qual. Methods 2009, 8, 35–52. [Google Scholar] [CrossRef]
- Al-Aynati, M.M.; Chorneyko, K.A. Comparison of voice-automated transcription and human transcription in generating pathology reports. Arch. Path Lab. Med. 2003, 127, 721–725. [Google Scholar] [CrossRef]
- de la Torre-López, J.; Ramírez, A.; Romero, J.R. Artificial intelligence to automate the systematic review of scientific literature. Computing 2023, 105, 2171–2194. [Google Scholar] [CrossRef]
- Jin, Q.; Leaman, R.; Lu, Z. PubMed and beyond: Biomedical literature search in the age of artificial intelligence. eBioMed. 2024, 100, 104988. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Filice, R.W.; Kahn, C.E. Biomedical Ontologies to Guide AI Development in Radiology. J. Digit. Imaging 2021, 34, 1331–1341, [published correction appears in J. Digit. Imaging 2022, 35, 1419. https://doi.org/10.1007/s10278-021-00568-6]. [Google Scholar] [CrossRef]
- Sadeghi-Ghyassi, F.; Damanabi, S.; Kalankesh, L.R.; Van de Velde, S.; Feizi-Derakhshi, M.R.; Hajebrahimi, S. How are ontologies implemented to represent clinical practice guidelines in clinical decision support systems: Protocol for a systematic review. Syst. Rev. 2022, 11, 183. [Google Scholar] [CrossRef]
- Jing, X.; Min, H.; Gong, Y.; Biondich, P.; Robinson, D.; Law, T.; Nohr, C.; Faxvaag, A.; Rennert, L.; Hubig, N.; et al. Ontologies Applied in Clinical Decision Support System Rules: Systematic Review. JMIR Med. Inform. 2023, 11, e43053. [Google Scholar] [CrossRef]
- Moghadam, S.T.; Hooman, N.; Sheikhtaheri, A. Patient safety classifications, taxonomies and ontologies: A systematic review on development and evaluation methodologies. J. Biomed. Inform. 2022, 133, 104150. [Google Scholar] [CrossRef]
- Okikiola, F.M.; Ikotun, A.M.; Adelokun, A.P.; Ishola, P.E. A Systematic Review of Health Care Ontology. Asian J. Res. Comput. Sci. 2020, 5, 15–28. [Google Scholar] [CrossRef]
- Sora: Creating Video from Text. Available online: https://openai.com/sora (accessed on 1 February 2025).
- Adams, D.; Chuah, K.-M. Artificial Intelligence-Based Tools in Research Writing: Current Trends and Future Potentials. In Artificial Intelligence in Higher Education; CRC Press: Boca Raton, FL, USA, 2022; pp. 169–184. [Google Scholar] [CrossRef]
- Tai, M.C. The impact of artificial intelligence on human society and bioethics. Tzu Chi Med. J. 2020, 32, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, A.V.; Möller, S.; Ryg, J. Use of GPT-4 to Diagnose Complex Clinical Cases. NEJM AI 2023, 1, AIp2300031. [Google Scholar] [CrossRef]
- Golan, R.; Reddy, R.; Muthigi, A.; Ramasamy, R. Artificial intelligence in academic writing: A paradigm-shifting technological advance. Nat. Rev. Urol. 2023, 20, 327–328. [Google Scholar] [CrossRef]
- Rinderknecht, E.; Schmelzer, A.; Kravchuk, A.; Goßler, C.; Breyer, J.; Gilfrich, C.; Burger, M.; Engelmann, S.; Saberi, V.; Kirschner, C. Leveraging Large Language Models for High-Quality Lay Summaries: Efficacy of ChatGPT-4 with Custom Prompts in a Consecutive Series of Prostate Cancer Manuscripts. Curr. Oncol. 2025, 32, 102. [Google Scholar] [CrossRef]
- Meyer, J.G.; Urbanowicz, R.J.; Martin, P.C.N.; O’Connor, K.; Li, R.; Peng, P.C.; Bright, T.J.; Tatonetti, N.; Won, K.J.; Gonzalez-Hernandez, G. ChatGPT and large language models in academia: Opportunities and challenges. BioData Min. 2023, 16, 20. [Google Scholar] [CrossRef]
- Mogavi, R.H.; Deng, C.; Kim, J.J.; Zhou, P.; Kwon, Y.D.; Metwally, A.H.S.; Tlili, A.; Bassanelli, S.; Bucchiarone, A.; Gujar, S.; et al. ChatGPT in education: A blessing or a curse? A qualitative study exploring early adopters’ utilization and perceptions. Comput. Human Behav. Artif. Humans 2024, 2, 100027. [Google Scholar] [CrossRef]
- Bernard, N.; Sagawa, Y., Jr.; Bier, N.; Lihoreau, T.; Pazart, L.; Tannou, T. Using artificial intelligence for systematic review: The example of elicit. BMC Med. Res. Methodol. 2025, 25, 75. [Google Scholar] [CrossRef]
- Fabiano, N.; Gupta, A.; Bhambra, N.; Luu, B.; Wong, S.; Maaz, M.; Fiedorowicz, J.G.; Smith, A.L.; Solmi, M. How to optimize the systematic review process using AI tools. JCPP Adv. 2024, 4, e12234. [Google Scholar] [CrossRef]
- Baowaly, M.K.; Lin, C.C.; Liu, C.L.; Chen, K.T. Synthesizing electronic health records using improved generative adversarial networks. J. Am. Med. Inform. Assoc. 2019, 26, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.; Brown, R.; Sillence, E.; Coventry, L.; Lloyd, K.; Gibbs, J.; Tariq, S.; Durrant, A.C. Understanding the Barriers and Facilitators to Sharing Patient-Generated Health Data Using Digital Technology for People Living with Long-Term Health Conditions: A Narrative Review. Front. Public Health 2021, 9, 641424. [Google Scholar] [CrossRef] [PubMed]
- Datt, M.; Sharma, H.; Aggarwal, N.; Sharma, S. Role of ChatGPT-4 for Medical Researchers. Ann. Biomed. Eng. 2024, 52, 1534–1536. [Google Scholar] [CrossRef] [PubMed]
- Bulloch, G.; Seth, I.; Zhu, Z.; Stapleton, F.J.; Fung, A.; Tan, Z.; Taylor, H.R. Artificial Intelligence Applications and Performance Metrics in Ophthalmology: A Systematic Review and Meta-Analysis. Ann. Ophthalmol. Vis. Sci. 2023, 6, 1037. [Google Scholar]
- Quinn, T.P.; Senadeera, M.; Jacobs, S.; Coghlan, S.; Le, V. Trust and medical AI: The challenges we face and the expertise needed to overcome them. J. Am. Med. Inform. Assoc. 2021, 28, 890–894. [Google Scholar] [CrossRef]
- Chustecki, M. Benefits and Risks of AI in Health Care: Narrative Review. Interact. J. Med. Res. 2024, 13, e53616. [Google Scholar] [CrossRef]
- Khan, M.M.; Shah, N.; Shaikh, N.; Thabet, A.; Alrabayah, T.; Belkhair, S. Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges. Int. J. Med. Inform. 2025, 195, 105780. [Google Scholar] [CrossRef]
- Murdoch, B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med. Ethics. 2021, 22, 122. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Chen, Z. Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanit. Soc. Sci. Commun. 2023, 10, 567. [Google Scholar] [CrossRef]
- Challen, R.; Denny, J.; Pitt, M.; Gompels, L.; Edwards, T.; Tsaneva-Atanasova, K. Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 2019, 28, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Parfett, A.; Townley, S.; Allerfeldt, K. AI-based healthcare: A new dawn or apartheid revisited? AI Soc. 2021, 36, 983–999. [Google Scholar] [CrossRef] [PubMed]
- Ross, A. AI and the expert: A blueprint for the ethical use of opaque AI. AI Soc. 2022, 39, 925–936. [Google Scholar] [CrossRef]
- Bélisle-Pipon, J.C.; Monteferrante, E.; Roy, M.C.; Couture, V. Artificial intelligence ethics has a black box problem. AI Soc. 2023, 38, 1507–1522. [Google Scholar] [CrossRef]
- Mirbabaie, M.; Hofeditz, L.; Frick, N.R.J.; Stieglitz, S. Artificial intelligence in hospitals: Providing a status quo of ethical considerations in academia to guide future research. AI Soc. 2022, 37, 1361–1382. [Google Scholar] [CrossRef]
- Gupta, R.; Bagdady, K.; Mailey, B.A. Ethical concerns amidst employment of ChatGPT in plastic surgery. Aesthetic Surg. J. 2023, 43, NP656–NP657. [Google Scholar] [CrossRef]
- Alkaissi, H.; McFarlane, S.I. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus 2023, 15, e35179. [Google Scholar] [CrossRef]
- Menz, B.D.; Kuderer, N.M.; Bacchi, S.; Modi, N.D.; Chin-Yee, B.; Hu, T.; Rickard, C.; Haseloff, M.; Vitry, A.; McKinnon, R.A.; et al. Current safeguards, risk mitigation, and transparency measures of large language models against the generation of health disinformation: Repeated cross sectional analysis. BMJ 2024, 384, e078538. [Google Scholar] [CrossRef]
- Jiang, M.; Bacchi, S.; Kovoor, J.; Stretton, B.; Chan, W.O. Response to Jin and Dobry’s “ChatGPT for health care providers and patients: Practical implications within dermatology”. JAAD 2024, 90, E105. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Lee, A.G. Concerns with OpenAI’s Sora in Medicine. Ann. Biomed. Eng. 2024, 52, 1932–1934. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Zhang, Y.; Chu, Y.; Ding, Y.; Liu, Z.; Zhao, X.; Wang, Y.; Wan, J.; Ding, Y.; Tiwari, P. Application of artificial intelligence in drug-target interactions prediction: A review. Npj Biomed. Innov. 2025, 2, 1. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, T.; Liu, Q.; Sutcharitchan, C.; Zhou, Z.; Zhang, D.; Li, S. Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions. J. Pharm. Anal. 2025, 15, 101144. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef]
- King, M.R. The Future of AI in Medicine: A Perspective from a Chatbot. Ann. Biomed. Eng. 2023, 51, 291–295. [Google Scholar] [CrossRef]
- Fehr, J.; Citro, B.; Malpani, R.; Lippert, C.; Madai, V.I. A trustworthy AI reality-check: The lack of transparency of artificial intelligence products in healthcare. Front Digit Health 2024, 6, 1267290. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, N.; Del Ser, J.; Coeckelbergh, M.; López de Prado, M.; Herrera-Viedma, E.; Herrera, F. Connecting the dots in trustworthy artificial intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf. Fusion 2023, 99, 101896. [Google Scholar] [CrossRef]
- Meszaros, J.; Minari, J.; Huys, I. The future regulation of artificial intelligence systems in healthcare services and medical research in the European Union. Front. Genet. 2022, 13, 927721. [Google Scholar] [CrossRef]
- Liu, G.; Luo, Y.; Sheng, J. Discussion of ethical decision mode for artificial intelligence. AI Soc. 2022, 39, 767–773. [Google Scholar] [CrossRef]
- Morley, J.; Kinsey, L.; Elhalal, A.; Garcia, F.; Ziosi, M.; Floridi, L. Operationalising AI ethics: Barriers, enablers and next steps. AI Soc. 2021, 38, 411–423. [Google Scholar] [CrossRef]
- Rashidian, N.; Abu Hilal, M.; Frigerio, I.; Guerra, M.; Sterckx, S.; Tozzi, F.; Capelli, G.; Verdi, D.; Spolverato, G.; Gulla, A. Ethics and trustworthiness of artificial intelligence in Hepato-Pancreato-Biliary surgery: A snapshot of insights from the European-African Hepato-Pancreato-Biliary Association (E-AHPBA) survey. HPB 2025, 27, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Treger, D.; Harris, G.; Thaller, S.R. Advantages and ethics of artificial intelligence in plastic and reconstructive surgery. Artif. Intell. Surg. 2025, 5, 126–132. [Google Scholar] [CrossRef]
- Federal Register. Safe, Secure, And Trustworthy Development and Use of Artificial Intelligence. Available online: https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence (accessed on 30 December 2024).
- McDermott Will and Emery. CMS Releases Guidance on Coverage Criteria, Utilization Management, and Use of AI. Available online: https://www.mwe.com/insights/cms-releases-guidance-on-coverage-criteria-utilization-management-and-use-of-ai (accessed on 30 December 2024).
- Capelli, G.; Verdi, D.; Frigerio, I.; Rashidian, N.; Ficorilli, A.; Grasso, V.; Majidi, D.; Gumbs, A.A.; Spolverato, G.; Artificial Intelligence Surgery Editorial Board Study Group on Ethics. White paper: Ethics and trustworthiness of artificial intelligence in clinical surgery. Art. Int. Surg. 2023, 3, 111–122. [Google Scholar] [CrossRef]
- Kerasidou, A. Ethics of artificial intelligence in global health: Explainability, algorithmic bias and trust. J. Oral. Biol. Craniofac Res. 2021, 11, 612–614. [Google Scholar] [CrossRef]
- Voss, M.; Swart, O.; Abel, L.; Mahtani, K. Capacity-building partnerships for surgical post-graduate training in low- and middle-income countries: A scoping review of the literature with exploratory thematic synthesis. Health Policy Plan 2021, 35, 1385–1412. [Google Scholar] [CrossRef]
- Balasubramaniam, N.; Kauppinen, M.; Rannisto, A.; Hiekkanen, K.; Kujala, S. Transparency and explainability of AI systems: From ethical guidelines to requirements. Inf. Softw. Technol. 2023, 159, 107197. [Google Scholar] [CrossRef]
- Marey, A.; Arjmand, P.; Alerab, A.D.S.; Eslami, M.J.; Saad, A.M.; Sanchez, N.; Umair, M. Explainability, transparency and black box challenges of AI in radiology: Impact on patient care in cardiovascular radiology. Egypt J. Radiol. Nucl. Med. 2024, 55, 183. [Google Scholar] [CrossRef]
- Krishnan, G.; Singh, S.; Pathania, M.; Gosavi, S.; Abhishek, S.; Parchani, A.; Dhar, M. Artificial intelligence in clinical medicine: Catalyzing a sustainable global healthcare paradigm. Front AI 2023, 6, 1227091. [Google Scholar] [CrossRef]
- Thaichana, P.; Oo, M.Z.; Thorup, G.L.; Chansakaow, C.; Arworn, S.; Rerkasem, K. Integrating Artificial Intelligence in Medical Writing: Balancing Technological Innovation and Human Expertise, with Practical Applications in Lower Extremity Wounds Care. Int. J. Low. Extrem. Wounds 2025. [Google Scholar] [CrossRef]
- Guo, C.; He, Y.; Shi, Z.; Wang, L. Artificial intelligence in surgical medicine: A brief review. Ann. Med. Surg. 2025, 87, 2180–2186. [Google Scholar] [CrossRef]
- Knudsen, J.E.; Ghaffar, U.; Ma, R.; Hung, A.J. Clinical applications of artificial intelligence in robotic surgery. J. Robot Surg. 2024, 18, 102. [Google Scholar] [CrossRef]
Primary Function(s) | AI Tool | Function | Weblink |
---|---|---|---|
Improving writing and grammar | Grammarly | Improves grammar, spelling, and punctuation. Paid functions improve writing style and checks for plagiarism. | https://www.grammarly.com/ (accessed 2 March 2025) |
Quillbot | Improves writing, grammar, assists with citations, and paraphrases text. | https://quillbot.com/ (accessed 2 March 2025) | |
Trinka | Online grammar checker that also improves syntax and spelling. | https://www.trinka.ai/ (accessed 2 March 2025) | |
Jenni | Assists and improves written language. | https://jenni.ai/ (accessed 2 March 2025) | |
Hemingway | Improves the quality of writing. | https://hemingwayapp.com/ (accessed 2 March 2025) | |
ProWritingAid | https://prowritingaid.com/ (accessed 2 March 2025) | ||
Rytr.me | Assists with writing. | https://rytr.me/ (accessed 2 March 2025) | |
Assisting writing and generating ideas | ChatGPT (ChatGPT-3.5) | OpenAI′s LLM utilizes supervised and reinforcement learning techniques to generate relatively accurate and fruitful outputs from user prompts. | https://chat.openai.com/ |
BARD | Google′s LLM which functions similarly to ChatGPT. | https://bard.google.com/ (accessed 2 March 2025) | |
BERT | Google′s family of language models introduced in 2018 can answer user′s questions. | https://github.com/google-research/bert (accessed 2 March 2025) | |
Bing AI | Bing’s LLM that utilized live internet data to provide outputs from user prompts. | https://www.bing.com/ (accessed 2 March 2025) | |
Claude | A transformer-based LLM which enables it to generate human-like responses to user input. | https://console.anthropic.com/login (accessed 2 March 2025) | |
Med-PaLM 2 | Google’s LLM dedicated to answering medical queries and assisting in medical research. As of this paper′s publication date, it has not been made public yet. | https://sites.research.google/med-palm/ (accessed 2 March 2025) | |
Osteosynthesis | Generates research articles based on keywords that user’s input. | https://www.osteosynthesis.org/pubmed-search (accessed 2 March 2025) | |
AI-Writer | Generates articles from a simple headline. | https://ai-writer.com/ (accessed 2 March 2025) | |
WriteSonic | Assists with writing research articles with SEO-optimized keywords and meta-descriptions. | https://writesonic.com/ (accessed 2 March 2025) | |
Search engine optimization | Consensus | Searches the literature and provides a list of relevant articles and their summaries based on user input. | https://consensus.app/ (accessed 2 March 2025) |
Elicit | Shows the user relevant systematic reviews and their summaries based on user input, enabling one to filter through based on intervention and side effects. | https://elicit.org/ (accessed 2 March 2025) | |
SEO.ai | Search engine optimization. | https://seo.ai/ (accessed 2 March 2025) | |
Generate/ interpret images | Dall-E3 | Generates images based on user input. | https://openai.com/index/dall-e-3/ (accessed 2 March 2025) |
Jasper AI | https://www.jasper.ai/ (accessed 2 March 2025) | ||
DermEngine | Generates differentials based on the image of skin lesion uploaded. | https://www.dermengine.com/ (accessed 2 March 2025) | |
V7 | Process images, videos, imaging files, and documents based on data uploaded by the user. | https://www.v7labs.com (accessed 2 March 2025) | |
Midjourney | Generates images from natural language descriptions. | https://www.midjourney.com (accessed 2 March 2025) | |
SkinVision | Utilizes AI algorithms to diagnose skin moles and classify them as benign or malignant. | https://www.skinvision.com/ (accessed 2 March 2025) | |
Organization and Content Search | Lateral | Automatically organize papers for use in future research. | https://www.lateral.io/ (accessed 2 March 2025) |
Research Rabbit | Tracks citations, creates bibliographies, and generates summaries of papers, allowing researchers to organize their research better. | https://www.researchrabbit.ai/ (accessed 2 March 2025) | |
ReadCube Papers | Helps manage bibliographies and references when writing papers. | https://www.papersapp.com/ (accessed 2 March 2025) | |
Connected Papers | Creates graphs by analyzing thousands of papers from Semantic Scholar, then selects a few dozen that possess the strongest connection to the original paper. | https://www.connectedpapers.com (accessed 2 March 2025) | |
Scite | Able to automatically extract key information from relevant scientific articles such as research questions, methods, citations, and results. | https://scite.ai/ (accessed 2 March 2025) | |
Iris | Creates a research map by extracting keywords, contextual synonyms and hypernyms of the research question, then compares them to over 100 million OpenAccess papers to find relevant matches. | https://iris.ai/ (accessed 2 March 2025) | |
ChatPDF | Analyzes PDF files and provides brief summaries of the contents. | https://www.chatpdf.com/ (accessed 2 March 2025) | |
Scholarcy | Generates summary flashcards from documents, links to references, and extract visuals like figures, tables and images. | https://www.scholarcy.com/ (accessed 2 March 2025) | |
Audio analysis | Fireflies.ai | Analyze, record, and transcribe voice inputs. | https://fireflies.ai/ (accessed 2 March 2025) |
PowerScribe360 | Understands user’s speech and transcribes them onto textual documentation. | https://www.nuance.com/en-au/healthcare/medical-imaging/powerscribe-360-reporting.html (accessed 2 March 2025) | |
audEERING | Intended to diagnose pathologies like Parkinson’s and COVID-19 by collecting audio data from patients. | https://www.audeering.com/technology/health-ai/ (accessed 2 March 2025) | |
Publication and Collaboration | SciSpace | Aids researchers in publishing their works by facilitating the manuscript publication and peer reviewing. | https://scispace.com/ (accessed 2 March 2025) |
PubMed | A versatile search engine for biomedical literature. | https://pubmed.ncbi.nlm.nih.gov/ (accessed 2 March 2025) | |
Embase | A database for biomedical and pharmacological literature aiding regulatory compliance for licensed drugs. | https://www.embase.com/ (accessed 2 March 2025) | |
Video generation | Sora | OpenAI′s upcoming AI model specializes in generating videos from text inputs. | https://openai.com/index/sora/ (accessed 2 March 2025) |
Tool Name | Primary Function | Key Strengths | Known Limitations/Evidence Gaps |
---|---|---|---|
Grammarly | Writing improvement | Robust grammar correction; tone suggestions; plagiarism checker. | Limited domain-specific support; mostly non-medical; no formal academic validation. |
Quillbot | Paraphrasing, citations | Useful for rephrasing and summarization; citation tools. | Paraphrasing may distort scientific meaning; no peer-reviewed assessment. |
Trinka | Grammar, spelling, and syntax | Academic tone correction; includes technical vocabulary suggestions. | Limited clinical/biomedical domain validation. |
ChatGPT | Content generation, Q&A | Broad utility; conversational; custom prompts can generate lay summaries. | Risk of hallucinations; no transparency on sources. |
Claude/Bard/Bing AI | Similar to ChatGPT | Integration with real-time search (Bing), enhanced safety (Claude). | Lack of real-world performance evaluation in health-specific tasks. |
Med-PaLM 2 | Medical Q&A | Specialized in healthcare; outperformed general LLMs in benchmarks. | Not publicly available; independent peer-reviewed data lacking. |
Elicit | Research Q&A with source filters | Extracts claims from papers; filters by population/intervention/outcome. | Still experimental; no formal validation of claim extraction accuracy. |
Scite.ai | Citation-based insights | Differentiates supporting/contradicting citations; aids evidence tracking. | Performance varies across fields; citation sentiment can be ambiguous. |
Connected Papers | Citation mapping | Helps visualize related works in a citation graph. | Limited to Semantic Scholar database; not all connections are semantically meaningful. |
DALL-E3/Midjourney | Image generation from text | High-quality image output; artistic or illustrative applications. | Not clinically validated; inappropriate for medical images or diagnostic tasks. |
DermEngine/SkinVision | Diagnostic imaging | Lesion classification using image input; CE-marked in EU (SkinVision). | Studies show variable accuracy 4; not meant to replace clinician judgment. |
Scholarcy/ChatPDF | PDF summarization | Summarizes large texts; identifies key results and visuals. | Can miss nuance; accuracy of automatic extraction unverified in the literature. |
Fireflies/PowerScribe360 | Audio transcription | Accurate speech-to-text for meetings or reporting. | Limited biomedical validation; performance affected by accents and background noise. |
SciSpace | Publishing support | Helps with formatting, peer review integration. | Little formal evaluation of its impact on publication quality or speed. |
Sora (OpenAI) | Text-to-video generation | Innovative multimedia generation from text prompts. | No clinical applications; use in science communication remains theoretical. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.; Seth, I.; Cevik, J.; Mu, X.; Sofiadellis, F.; Cuomo, R.; Rozen, W.M. Artificial Intelligence Tools in Surgical Research: A Narrative Review of Current Applications and Ethical Challenges. Surgeries 2025, 6, 55. https://doi.org/10.3390/surgeries6030055
Lim B, Seth I, Cevik J, Mu X, Sofiadellis F, Cuomo R, Rozen WM. Artificial Intelligence Tools in Surgical Research: A Narrative Review of Current Applications and Ethical Challenges. Surgeries. 2025; 6(3):55. https://doi.org/10.3390/surgeries6030055
Chicago/Turabian StyleLim, Bryan, Ishith Seth, Jevan Cevik, Xin Mu, Foti Sofiadellis, Roberto Cuomo, and Warren M. Rozen. 2025. "Artificial Intelligence Tools in Surgical Research: A Narrative Review of Current Applications and Ethical Challenges" Surgeries 6, no. 3: 55. https://doi.org/10.3390/surgeries6030055
APA StyleLim, B., Seth, I., Cevik, J., Mu, X., Sofiadellis, F., Cuomo, R., & Rozen, W. M. (2025). Artificial Intelligence Tools in Surgical Research: A Narrative Review of Current Applications and Ethical Challenges. Surgeries, 6(3), 55. https://doi.org/10.3390/surgeries6030055