A Novel Method for Controlling Crud Deposition in Nuclear Reactors Using Optimization Algorithms and Deep Neural Network Based Surrogate Models †
Abstract
:1. Introduction
2. Optimization Tools and Methods
2.1. Neural Network for CRUD Modeling
2.2. Genetic Algorithm
2.3. Crud Optimization Methodologies
3. Optimization Methodologies and Results
3.1. Total Crud Mass Reduction
3.2. Crud Deposition Analysis
3.2.1. Optimization Results
3.2.2. Note on the Mass of Boron in Crud
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas Wellock, U.S. NRC Blog, Crud: Another Acronym Bites the Dust. Available online: https://public-blog.nrc-gateway.gov/2015/03/31/crud-another-acronym-bites-the-dust/ (accessed on 10 September 2022).
- Frattini, P.L.; Blok, J.; Chauffriat, S.; Sawicki, J.A. Axial offset anomaly: Coupling PWR primary chemistry with core design. Nucl. Energy 2001, 40, 123–135. [Google Scholar] [CrossRef]
- Uchida, S.; Asakura, Y.; Suzuki, H. Deposition of boron on fuel rod surface under subcooled boiling conditions- An approach toward understanding AOA occurrence. Nucl. Eng. Des. 2011, 241, 2398–2410. [Google Scholar] [CrossRef]
- Johnson, N.; Wu, J.; Morrison, J.; Connolly, B.; Banks, A. Mechanisms of Crud Deposition in Pressurised Water Nuclear Plant. In Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ottawa, Canada, 9–13 August 2015. [Google Scholar]
- Roe, J. Effects of Crud Buildup and Boron Deposition on Power Distribution and Shutdown Margin. Available online: https://www.nrc.gov/reading-rm/doc-collections/gen-comm/info-notices/1997/in97085.html (accessed on 10 September 2022).
- Joe, J.H.; Kim, S.J.; Jones, B.G. A study of solute transport of radiolysis products in crud and its effects on crud grown on PWR fuel pin. Nucl. Eng. Des. 2016, 300, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, J.A. Evidence of Ni2FeBO5 and m-ZrO2 precipitates in fuel rod deposits in AOA-affected high boiling duty PWR core. J. Nucl. Mater. 2008, 374, 248–269. [Google Scholar] [CrossRef]
- Dumnernchanvanit, I.; Zhang, N.Q.; Robertson, S.; Delmore, A.; Carlson, M.B.; Hussey, D.; Short, M.P. Initial Experimental evaluation of crud-resistant materials for light water reactors. J. Nucl. Mater. 2018, 498, 1–8. [Google Scholar] [CrossRef]
- Collins, B.; Galloway, J.; Salko, R., Jr.; Clarno, K.; Wysocki, A.; Okhuysen, B.; Andersson, A.D. Whole Core Crud-Induced Power Shift Simulations Using VERA. In Proceedings of the Physor 2018: Reactor Physics Paving the Way towards More Efficient Systems, Cancun, Mexico, 22–26 April 2018. [Google Scholar]
- Short, M.P.; Hussey, D.; Kendrick, B.K.; Besmann, T.M.; Stanek, C.R.; Yip, S. Multiphysics modeling of porous CRUD deposits in nuclear reactors. J. Nucl. Mater. 2013, 443, 579–587. [Google Scholar] [CrossRef]
- Jin, M.; Short, M. Multiphysics modeling of two-phase film boiling within porous corrosion deposits. J. Comput. Phys. 2016, 316, 504–518. [Google Scholar] [CrossRef]
- Park, M.-S.; Shim, H.-S.; Baek, S.H.; Kim, J.G.; Hur, D.H. Effects of oxidation states of fuel cladding surface on crud deposition in simulated primary water of PWRs. Ann. Nucl. Energy 2017, 103, 275–281. [Google Scholar] [CrossRef]
- Short, M.P. The particulate nature of the crud source term in light water reactors. J. Nucl. Mater. 2018, 509, 478–481. [Google Scholar] [CrossRef]
- Shim, H.-S.; Park, M.-S.; Baek, S.H.; Hur, D.-H. Effect of aluminum oxide coated on fuel cladding surface on crud deposition in simulated PWR primary water. Ann. Nucl. Energy 2018, 121, 607–614. [Google Scholar] [CrossRef]
- Pawel, A.; Collins, B.; Maldonado, G.I. Machine Learning Algorithms for Nodal Method Cross-Section Functionalization. In Proceedings of the Physor 2018: Reactor Physics Paving the Way towards More Efficient Systems, Cancun, Mexico, 22–26 April 2018. [Google Scholar]
- Tano, M.E.; Ragusa, J.C. Accelerating Radiation Sn Transport Solves Using Artificial Neural Networks. In Proceedings of the Transactions of the American Nuclear Society, Washington, DC, USA, 17–21 November 2019; Volume 121, pp. 825–827. [Google Scholar]
- Mena, P.; Kirby, L. Machine Learning Accident Classification Using Nuclear Reactor Data. In Proceedings of the Transactions of the American Nuclear Society, Washington, DC, USA, 17–21 November 2019; Volume 121, pp. 825–827. [Google Scholar]
- Ortiz, J.J.; Requena, I. Using a multi-state recurrent neural network to optimize loading patterns in BWRs. Ann. Nucl. Energy 2004, 31, 789–803. [Google Scholar] [CrossRef]
- Erdogan, A.; Geckinli, M. A PWR reload optimisation code (XCore) using artificial neural networks and genetic algorithms. Ann. Nucl. Energy 2003, 30, 35–53. [Google Scholar] [CrossRef]
- Ortiz-Servin, J.J.; Pelta, D.A.; Cadenas, J.M.; Castillo, A.; Montes-Tadeo, J.L. Methodology for integrated fuel lattice and fuel load optimization using population-based metaheuristics and decision trees. Prog. Nucl. Energy 2018, 104, 264–270. [Google Scholar] [CrossRef]
- Poon, P.W.; Parks, G.T. Optimizing PWR reload core design. In Proceedings of the Parallel Problem Solving from Nature, 2, Brussels, Belgium, 28–30 September 1992. [Google Scholar]
- Alim, F.; Ivanov, K.; Levine, S.H. New genetic algorithms to optimize PWR reactors Part I: Loading Pattern and burnable poison placement optimization techniques for PWRs. Ann. Nucl. Energy 2008, 35, 93–112. [Google Scholar] [CrossRef]
- Israeli, E.; Gilad, E. Novel genetic algorithm for loading pattern optimization based on core physics heuristics. Ann. Nucl. Energy 2018, 118, 35–48. [Google Scholar] [CrossRef]
- Martin-del-Campo, C.; Francois, J.-L.; Avendano, L.; Gonzalez, M. Development of a BWR loading pattern design system based on modified genertic algorithms and knowledge. Ann. Nucl. Energy 2004, 31, 1901–1911. [Google Scholar] [CrossRef]
- Martin-del-Campo, C.; Palomera-Perez, M.-A.; Francois, J.-L. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization. Ann. Nucl. Energy 2009, 36, 1553–1559. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Aiyoshi, E. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm. Nucl. Technol. 2003, 143, 144–151. [Google Scholar] [CrossRef]
- Francois, J.L.; Lopez, H.A. SOPRAG: A system for boiling water reactors reload pattern optimization using genetic algorithms. Ann. Nucl. Energy 1999, 26, 1053–1063. [Google Scholar] [CrossRef]
- Mawdsley, M.; Parks, G. In-Core PWR Loading Pattern Optimization Via Tabu Search. In Proceedings of the Physor 2018: Reactor Physics Paving the Way towards More Efficient Systems, Cancun, Mexico, 22–26 April 2018. [Google Scholar]
- Hill, N.J.; Parks, G.T. Pressurized water reactor in-core nuclear fuel management by tabu search. Ann. Nucl. Energy 2015, 75, 64–71. [Google Scholar] [CrossRef]
- Safarzadeh, O.; Zolfaghari, A.; NOrouzi, A.; Minuchehr, H. Loading pattern optimization of PWR reactors using Artificial Bee Colony. Ann. Nucl. Energy 2011, 38, 2218–2226. [Google Scholar] [CrossRef]
- Khoshahval, F.; Minuchehr, H.; Zolfaghari, A. Performance evaluation of PSO and GA in PWR core loading pattern optimization. Nucl. Eng. Des. 2011, 241, 799–808. [Google Scholar] [CrossRef]
- Francois, J.-L.; Ortiz-Servin, J.J.; Martin-del-Campo, C.; Castillo, A.; Esquivel-Estrada, J. Comparison of metaheuristic optimization techniques for BWR fuel reloads pattern design. Ann. Nucl. Energy 2013, 51, 189–195. [Google Scholar] [CrossRef]
- Andersen, B.; Godfrey, A.; Hou, J.; Kropaczek, D.J. Application of Deep Learning Networks to Surrogate Modeling of Crud Deposition. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Raleigh, NC, USA, 3–7 October 2021. [Google Scholar]
- Andersen, B.; Delipei, G.; Kropaczek, D.; Hou, J. MOF: A Modular Framework for Rapid Application of Optimization Methodologies to General Engineering Design Problems. arXiv 2022, arXiv:2204.00141. [Google Scholar]
- Turner, J.A.; Clarno, K.; Sieger, M.; Bartlett, R.; Collins, B.; Pawlowski, R.; Schmidt, R.; Summers, R. The Virtual Environment for Reactor Applications (VERA): Design and architecture. J. Comput. Phys. 2016, 326, 544–568. [Google Scholar] [CrossRef] [Green Version]
- Kochunas, B.; Collins, B.; Stimpson, S.; Salko, R.; Jabaay, D.; Graham, A.; Liu, Y.; Kim, K.-S.; Wieselquist, W.; Godfrey, A.; et al. VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion. Nucl. Sci. Eng. 2017, 185, 616–628. [Google Scholar] [CrossRef]
- Salko, R.; Lange, T.L.; Kucukboyaci, V.; Sung, Y.; Palmtag, S.; Gehin, J.C.; Avromova, M. Development of COBRA-TF for modeling full-core, reactor operating cycles. In Proceedings of the Advances in Nuclear Fuel Management V (ANFM 2015), Hilton Head Island, SC, USA, 29 March–1 April 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-NET: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, NY, USA, 2018. [Google Scholar]
- Andersen, B. A Machine Learning Based Approach to Minimize Crud Induced Effects in Pressurized Water Reactors. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, USA, 2021. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Pearson India Education, Inc.: Noida, India, 1989. [Google Scholar]
- Miller, B.; Goldberg, D. Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Syst. 1995, 9, 193–212. [Google Scholar]
- Godfrey, A. CASL-U-2012-0131-004, VERA Core Physics Benchmark Progression Problem Specifications; U.S. Department of Energy: Washington, DC, USA, 2014.
Layer Numbers | Number of Nodes | Layer Types |
---|---|---|
1,2 | 136 × 136 × 49 | Convolution Input, Convolution Normalization |
3, 4, 5 | 136 × 136 × 16 | Convolution 2D, Average Pooling 2D |
6, 7, 8 | 68 × 68 × 32 | Convolution 2D, Average Pooling 2D |
9, 10, 11 | 34 × 34 × 64 | Convolution 2D, Average Pooling 2D |
12, 13, 14, 15, 16 | 17 × 17 × 128 | Convolution 2D, Upsampling, Concatenation |
17, 18, 19, 20, 21 | 34 × 34 × 64 | Convolution 2D, Upsampling, Concatenation |
22, 23, 24, 25, 26 | 68 × 68 × 32 | Convolution 2D, Upsampling, Concatenation |
27, 28, 29 | 128 × 128 × 16 | Convolution 2D |
30, 35, 36 | 128 × 128 × 1 | Convolution 2D, Multiplication, Output |
31 | 3 | Dense Input |
32, 33, 34 | 16 | Dense, Dense Normalization |
LP Number | Number Fresh Assemblies | Limiting FH Value | Maximum Boron Concentration (PPM) | Maximum FH | Cycle Length (EFPD) | Predicted Crud Mass (g) |
---|---|---|---|---|---|---|
1 | 84 | 1.55 | 1290.9 | 1.512 | 447.3 | 535.95 |
2 | 88 | 1.55 | 1297.9 | 1.550 | 474.4 | 711.17 |
3 | 92 | 1.55 | 1295.1 | 1.530 | 485.9 | 638.64 |
4 | 84 | 1.60 | 1271.7 | 1.594 | 461.1 | 858.50 |
5 | 88 | 1.60 | 1267.4 | 1.574 | 473.6 | 722.67 |
6 | 92 | 1.60 | 1289.6 | 1.596 | 482.8 | 925.37 |
LP Number | Number Fresh Assemblies | Limiting FH Value | Maximum Boron Concentration (PPM) | Maximum FH | Cycle Length (EFPD) | Predicted Crud Mass (g) |
---|---|---|---|---|---|---|
7 | 84 | 1.55 | 1238.6 | 1.543 | 445.3 | 464.14 |
8 | 88 | 1.55 | 1287.2 | 1.544 | 470.2 | 478.97 |
9 | 92 | 1.55 | 1323.6 | 1.542 | 486.0 | 765.92 |
10 | 84 | 1.60 | 1298.1 | 1.572 | 461.1 | 846.86 |
11 | 88 | 1.60 | 1288.6 | 1.590 | 471.9 | 680.65 |
12 | 92 | 1.60 | 1290.1 | 1.594 | 482.6 | 640.67 |
Fresh Assembly Count | Limiting FH Value | Crud Mass without Crud Optimization (Kg) | Crud Mass with Crud Optimization (Kg) |
---|---|---|---|
84 | 1.55 | 8.328 | 8.308 |
88 | 1.55 | 8.308 | 8.315 |
92 | 1.55 | 8.311 | 8.268 |
84 | 1.60 | 8.290 | 8.296 |
88 | 1.60 | 8.279 | 8.296 |
92 | 1.60 | 8.277 | 8.259 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, B.; Hou, J.; Godfrey, A.; Kropaczek, D. A Novel Method for Controlling Crud Deposition in Nuclear Reactors Using Optimization Algorithms and Deep Neural Network Based Surrogate Models. Eng 2022, 3, 504-522. https://doi.org/10.3390/eng3040036
Andersen B, Hou J, Godfrey A, Kropaczek D. A Novel Method for Controlling Crud Deposition in Nuclear Reactors Using Optimization Algorithms and Deep Neural Network Based Surrogate Models. Eng. 2022; 3(4):504-522. https://doi.org/10.3390/eng3040036
Chicago/Turabian StyleAndersen, Brian, Jason Hou, Andrew Godfrey, and Dave Kropaczek. 2022. "A Novel Method for Controlling Crud Deposition in Nuclear Reactors Using Optimization Algorithms and Deep Neural Network Based Surrogate Models" Eng 3, no. 4: 504-522. https://doi.org/10.3390/eng3040036
APA StyleAndersen, B., Hou, J., Godfrey, A., & Kropaczek, D. (2022). A Novel Method for Controlling Crud Deposition in Nuclear Reactors Using Optimization Algorithms and Deep Neural Network Based Surrogate Models. Eng, 3(4), 504-522. https://doi.org/10.3390/eng3040036