Solar Thermal Technology Aided Membrane Distillation Process for Wastewater Treatment in Textile Industry—A Technoeconomic Feasibility Assessment
Abstract
:1. Introduction
2. Experimental Methods: Methodology Adopted for Techno-Economic Assessment of Solar Thermal Operated Wastewater Treatment System
- Selection of textile units for the case study
- Design of a solar thermal integrated wastewater treatment system
- Performance evaluation of a solar-MD waste treatment system
- Estimation of techno-economic indicators, such as levelized cost of energy, payback period, internal rate, or return on investment made on solar thermal-operated wastewater treatment system.
- Recommendations
2.1. Selection of Textile Industry
2.2. Design of Solar Thermal-Based Wastewater Treatment in Textile Industry
2.3. Performance Assessment of CST for Wastewater Treatment
2.4. Techno-Economic Assessment of Solar Thermal Use for Wastewater Treatment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, B.; Chen, M.; Orooji, Y. Effective parameters on the perfor mance of ground heat exchangers: A review of latest advances. Geothermics 2022, 98, 102283. [Google Scholar] [CrossRef]
- Indian Textiles Industry Report; India Brand Equity Foundation: New Delhi, India, 2021.
- Kumar, P.; Buddhi, D.; Gupta, M.K.; Sinha, K.K. Process Mapping of Textile Sector for Concentrating Solar Thermal Technology Intervention. Int. J. Environ. Sci. Technol. 2020, 6, 10–23. [Google Scholar]
- Yousuf, A. Toledo-Cervantes, Microalgae Cultivation for Biofuels Production; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Pal, P. Industrial Water Treatment Process Technology; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Yahya, N.; Aziz, F.; Jamaludin, N.; Mutalib, M.A.; Ismail, A.; Salleh, W.W.; Jaafar, J.; Yusof, N.; Ludin, N.A. A review of integrated photocatalyst adsorbents for wastewater treatment. J. Environ. Chem. Eng. 2018, 6, 7411–7425. [Google Scholar] [CrossRef]
- Kumar, P.S.; Saravanan, A. Sustainable wastewater treatments in textile sector. In Sustainable Fibres and Textiles; Woodhead Publishing: Sawston, UK, 2017; pp. 323–346. [Google Scholar] [CrossRef]
- Laqbaqbi, M.; García-Payo, M.; Khayet, M.; El Kharraz, J.; Chaouch, M. Application of direct contact membrane distillation for textile wastewater treatment and fouling study. Sep. Purif. Technol. 2019, 209, 815–825. [Google Scholar] [CrossRef]
- Dow, N.; García, J.V.; Niadoo, L.; Milne, N.; Zhang, J.; Gray, S.; Duke, M. Demonstration of membrane distillation on textile waste water: Assessment of long term performance, membrane cleaning and waste heat integration. Environ. Sci. Water Res. Technol. 2017, 3, 433–449. [Google Scholar] [CrossRef]
- Gryta, M. Fouling in direct contact membrane distillation process. J. Membr. Sci. 2008, 325, 383–394. [Google Scholar] [CrossRef]
- Fard, A.K.; Rhadfi, T.; Khraisheh, M.; Atieh, M.A.; Khraisheh, M.; Hilal, N. Reducing flux decline and fouling of direct contact membrane distillation by utilizing thermal brine from MSF desalination plant. Desalination 2016, 379, 172–181. [Google Scholar] [CrossRef]
- Ullah, R.; Khraisheh, M.; Esteves, R.J.; McLeskey, J.T.; AlGhouti, M.; Gad-El-Hak, M.; Tafreshi, H.V. Energy efficiency of direct contact membrane distillation. Desalination 2018, 433, 56–67. [Google Scholar] [CrossRef]
- Zewdie, T.M.; Habtu, N.G.; Dutta, A.; Van der Bruggen, B. Solar-assisted membrane technology for water purification: A review. J. Water Reuse Desalination 2021, 11, 1–32. [Google Scholar] [CrossRef]
- Chafidz, A.; Rahma, F.N.; Nurkhamidah, S.; Al-Zahrani, S. Portable Solar-powered Membrane Distillation System to Solve Water and Energy Problems Simultaneously. J. Physics Conf. Ser. 2019, 1304, 012018. [Google Scholar] [CrossRef]
- Kandpal, T.C.; Garg, H.P. Financial Evaluation of Renewable Energy Technologies; Macmillan India Ltd.: Delhi, India, 2003. [Google Scholar]
- Mirhedayati, A.-S.; Hadadi, Z.; Zanjani, S.-M.; Shahinzadeh, H.; Bayindir, R.; Shaneh, M.; Moradi, J. Optimal Operation of Combined Heat and Power in Competitive Electricity Markets: A Case Study in IAUN. Int. J. Renew. Energy Res. 2021, 11, 1013–1022. [Google Scholar]
- Mehmood, U.; Agyekum, E.B.; Kamel, S.; Shahinzadeh, H.; Moshayedi, A.J. Exploring the Roles of Renewable Energy, Education Spending, and CO2 Emissions towards Health Spending in South Asian Countries. Sustainability 2022, 14, 3549. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Jahandide, M.; Guerrero, J.M. Robust scenario-based concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of CHP nonlinear model with triple operational zones. Sustain. Cities Soc. 2021, 68, 102795. [Google Scholar] [CrossRef]
- Mirhedayati, A.S.; Shahinzadeh, H.; Nafisi, H.; Gharehpetian, G.B.; Benbouzid, M.; Shaneh, M. CHPs and EHPs Effectiveness Evaluation in a Residential Multi-Carrier Energy Hub. In Proceedings of the Electrical Power Distribution Conference (EPDC), karaj, Iran, 25–26 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 42–47. [Google Scholar]
- Shahinzadeh, H.; Moradi, J.; Gharehpetian, G.B.; Abedi, M.; Hosseinian, S.H. Multi-objective scheduling of CHP based microgrids with cooperation of thermal and electrical storage units in restructured environment. In Proceedings of the Smart Grid Conference (SGC), Sanandaj, Iran, 28–29 November 2018; pp. 1–10. [Google Scholar]
- Shahinzadeh, H.; Gheiratmand, A.; Fathi, S.H.; Moradi, J. Optimal design and management of isolated hybrid renewable energy system (WT/PV/ORES). In Proceedings of the Electrical Power Distribution Networks Conference (EPDC), 2016 21st Conference, Karaj, Iran, 5–6 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 208–215. [Google Scholar]
- ul-Islam, S.; Butola, B.S. The Impact and Prospects of Green Chemistry for Textile Technology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
Latitude | Longitude | GHI | DNI | Ta | Wind Speed |
---|---|---|---|---|---|
(°N) | (°E) | kWh/m2/Year | kWh/m2/Year | (°C) | (m/s) |
22.71 | 75.85 | 1980 | 2075 | 25.1 | 3.8 |
Parameter | Unit | Value |
---|---|---|
Amount of effluent to be treated—10 m3/day | m3/day | 10 |
Nominal effluent flow rate | m3/hour | 0.4 |
The energy required per m3 distillate | kWh/m3 | 150 |
Input temperature of feed water | °C | 90 |
The outlet temperature of the solar field | °C | 100 |
Distillate production | m3/day | 8.8 |
Concentrate production | m3/day | 1.2 |
TDS in feed water | mg/L | 30,000 |
TDS in concentrate | mg/L | 220,00~250,000 |
Concentration factor | - | 8 (approx.) |
Design Value of Insolation (GHId) | Area of CPC Require (ACPC) | Energy Delivered Annually | Solar Fraction |
---|---|---|---|
W/m2 | m2 | MWhth | |
500 | 267 | 239 | 0.46 |
600 | 222 | 199 | 0.38 |
700 | 190 | 171 | 0.33 |
800 | 167 | 150 | 0.28 |
900 | 148 | 133 | 0.25 |
Design Value of Insolation (GHId) | Energy Delivered Annually | Capital Investment | LCTE |
---|---|---|---|
W/m2 | MWhth | (Rs in Lakh) | (Rs/GJ) |
500 | 239 | 80.00 | 1170 |
600 | 199 | 66.67 | 1168 |
700 | 171 | 57.14 | 1163 |
800 | 150 | 50.00 | 1166 |
900 | 133 | 44.44 | 1165 |
Type of Fuel to Be Replaced by Solar Thermal | Pay Back Period (Years) | IRR (%) |
---|---|---|
Furnace Oil | 10 | 18.87 |
LDO | 7.5 | 22.05 |
Coal | Not Possible in country like India | Not Possible in country like India |
Natural Gas | 7 | 23.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, M.K.; Mohite, R.B.; Jagannath, S.M.; Kumar, P.; Raskar, D.S.; Banerjee, M.K.; Singh, S.K.; Dogančić, D.; Đurin, B. Solar Thermal Technology Aided Membrane Distillation Process for Wastewater Treatment in Textile Industry—A Technoeconomic Feasibility Assessment. Eng 2023, 4, 2363-2374. https://doi.org/10.3390/eng4030135
Gupta MK, Mohite RB, Jagannath SM, Kumar P, Raskar DS, Banerjee MK, Singh SK, Dogančić D, Đurin B. Solar Thermal Technology Aided Membrane Distillation Process for Wastewater Treatment in Textile Industry—A Technoeconomic Feasibility Assessment. Eng. 2023; 4(3):2363-2374. https://doi.org/10.3390/eng4030135
Chicago/Turabian StyleGupta, Mukesh Kumar, Rajendra B. Mohite, Salunkhe Madhav Jagannath, Pankaj Kumar, Dipak Shankar Raskar, Malay Kumar Banerjee, Suraj Kumar Singh, Dragana Dogančić, and Bojan Đurin. 2023. "Solar Thermal Technology Aided Membrane Distillation Process for Wastewater Treatment in Textile Industry—A Technoeconomic Feasibility Assessment" Eng 4, no. 3: 2363-2374. https://doi.org/10.3390/eng4030135
APA StyleGupta, M. K., Mohite, R. B., Jagannath, S. M., Kumar, P., Raskar, D. S., Banerjee, M. K., Singh, S. K., Dogančić, D., & Đurin, B. (2023). Solar Thermal Technology Aided Membrane Distillation Process for Wastewater Treatment in Textile Industry—A Technoeconomic Feasibility Assessment. Eng, 4(3), 2363-2374. https://doi.org/10.3390/eng4030135