Nano-Biofungicides and Bio-Nanofungicides: State of the Art of Innovative Tools for Controlling Resistant Phytopathogens
Abstract
:1. Introduction
2. Global Impact of Fungal Diseases in Agriculture
3. Fungicide Resistance in Phytopathogenic Fungi
3.1. Current Fungicides and Strategies to Combat Fungal Disease and Resistance
4. The Era of Nanotechnology in Agriculture
Nanoparticles as Fungicides
5. Current Nano-Based Alternatives to Manage Fungal Disease and Resistance in Agriculture
5.1. Comparison Between Traditional Fungicides and Nano-Based Alternatives in Real-World Agricultural Settings
5.2. Nano-Biofungicides and Bio-Nanofungicides
5.2.1. Nano-Biofungicides
5.2.2. Bio-Nanofungicides
6. Mechanisms of Action of Nano-Biofungicides and Bio-Nanofungicides
6.1. Surface Interaction and Adhesion
6.2. Penetration and Uptake
6.3. Release and Efficacy
7. Improving Antifungal Strategies by Integrating Nanoparticles with Chemical Fungicides
8. Environmental Impact—Soil Interaction
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhir, S.; Bhatt, S.; Chauhan, M.; Garg, V.; Dutt, R.; Verma, R. An Overview of Metallic Nanoparticles: Classification, Synthesis, Applications, and Their Patents. Recent Patents Nanotechnol. 2024, 18, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Gul, A.; Zia, M.; Javed, R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl. Microbiol. Biotechnol. 2023, 107, 1039–1061. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Gutiérrez-Wing, C.; Velázquez-Salazar, J.J.; José-Yacamán, M. Procedures for the Synthesis and Capping of Metal Nanoparticles. Methods Mol. Biol. 2020, 2118, 3–20. [Google Scholar]
- Banaye Yazdipour, A.; Masoorian, H.; Ahmadi, M.; Mohammadzadeh, N.; Ayyoubzadeh, S.M. Predicting the toxicity of nanoparticles using artificial intelligence tools: A systematic review. Nanotoxicology 2023, 17, 62–77. [Google Scholar] [CrossRef]
- Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 2003, 14, 95–100. [Google Scholar] [CrossRef]
- Steinberg, G.; Gurr, S.J. Fungi, fungicide discovery and global food security. Fungal Genet. Biol. 2020, 144, 103476. [Google Scholar] [CrossRef]
- Gai, Y.; Wang, H. Plant Disease: A Growing Threat to Global Food Security. Agronomy 2024, 14, 1615. [Google Scholar] [CrossRef]
- Godoy, C.V.; Seixas, C.D.S.; Soares, R.M.; Marcelino-Guimarães, F.C.; Meyer, M.C.; Costamilan, L.M. Asian soybean rust in Brazil: Past, present, and future. Pesqui. Agropecu. Bras. 2016, 51, 407–421. [Google Scholar] [CrossRef]
- Barro, J.P.; Neves, D.L.; Del Ponte, E.M.; Bradley, C.A. Frogeye leaf spot caused by Cercospora sojina: A review. Trop. Plant Pathol. 2023, 48, 363–374. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- Islam, T.; Danishuddin; Tamanna, N.T.; Matin, M.N.; Barai, H.R.; Haque, A. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. Plants 2024, 13, 2737. [Google Scholar] [CrossRef]
- Yin, Y.; Miao, J.; Shao, W.; Liu, X.; Zhao, Y.; Ma, Z. Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology 2023, 113, 707–718. [Google Scholar] [CrossRef]
- Dorigan, A.F.; Moreira, S.I.; da Silva Costa Guimarães, S.; Cruz-Magalhães, V.; Alves, E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. Pest Manag. Sci. 2023, 79, 4731–4753. [Google Scholar] [CrossRef]
- Pimentão, A.R.; Cuco, A.P.; Pascoal, C.; Cássio, F.; Castro, B.B. Current trends and mismatches on fungicide use and assessment of the ecological effects in freshwater ecosystems. Environ. Pollut. 2024, 347, 123678. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Wang, Y.; Qin, Y.; Yan, B.; Martyniuk, C.J. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. Environ. Pollut. 2021, 275, 116671. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Alam Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total. Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Mohanty, L.K.; Singh, A.; Pandey, A.K.; Kumar, R.H.; Ramesh, G.; Swamy, G.N.; Pandey, S.K.; Singh, B.V. Harnessing Nanotechnology for Eco-Friendly Crop Enhancement and Sustainable Agriculture. J. Exp. Agric. Int. 2024, 46, 154–167. [Google Scholar] [CrossRef]
- Kutawa, A.B.; Ahmad, K.; Ali, A.; Hussein, M.Z.; Wahab, M.A.A.; Adamu, A.; Ismaila, A.A.; Gunasena, M.T.; Rahman, M.Z.; Hossain, I. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. Biology 2021, 10, 881. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, W.; Zhu, G.; Tan, Z.; Huang, L.; Zhang, P.; Gao, L.; Rui, Y. Nano-Pesticides and Fertilizers: Solutions for Global Food Security. Nanomaterials 2023, 14, 90. [Google Scholar] [CrossRef]
- Justo-Hanani, R.; Dayan, T. The role of the state in regulatory policy for nanomaterials risk: Analyzing the expansion of state-centric rulemaking in EU and US chemicals policies. Res. Policy 2014, 43, 169–178. [Google Scholar] [CrossRef]
- FDA. Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology (accessed on 18 April 2025).
- US EPA. Control of Nanoscale Materials Under the Toxic Substances Control Act. Available online: https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under (accessed on 18 April 2025).
- Mech, A.; Gottardo, S.; Amenta, V.; Amodio, A.; Belz, S.; Bøwadt, S.; Drbohlavová, J.; Farcal, L.; Jantunen, P.; Małyska, A.; et al. Safe- and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop. Regul. Toxicol. Pharmacol. 2022, 128, 105093. [Google Scholar] [CrossRef]
- Santos, P.A.; Biraku, X.; Nielsen, E.; Ozketen, A.C.; Ozketen, A.A.; Hakki, E.E. Agricultural nanotechnology for a safe and sustainable future: Current status, challenges, and beyond. J. Sci. Food Agric. 2024, 105, 3159–3169. [Google Scholar] [CrossRef]
- Sharma, S.; Kumari, P.; Thakur, P.; Brar, G.S.; Bouqellah, N.A.; Hesham, A.E.-L. Synthesis and characterization of Ni0.5Al0.5Fe2O4 nanoparticles for potent antifungal activity against dry rot of ginger (Fusarium oxysporum). Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- AlHarethi, A.A.; Abdullah, Q.Y.; AlJobory, H.J.; Anam, A.M.; Arafa, R.A.; Farroh, K.Y. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. Discov. Nano 2024, 19, 105. [Google Scholar] [CrossRef]
- Bharose, A.A.; Hajare, S.T.; P, G.H.; Soni, M.; Prajapati, K.K.; Singh, S.C.; Upadhye, V. Bacteria-mediated green synthesis of silver nanoparticles and their antifungal potentials against Aspergillus flavus. PLoS ONE 2024, 19, e0297870. [Google Scholar] [CrossRef]
- Guerrero, D.S.; Bertani, R.P.; Ledesma, A.; Frías, M.D.L.A.; Romero, C.M.; Costa, J.S.D. Silver nanoparticles synthesized by the heavy metal resistant strain Amycolatopsis tucumanensis and its application in controlling red strip disease in sugarcane. Heliyon 2022, 8, e09472. [Google Scholar] [CrossRef]
- Andishmand, H.; Azadmard-Damirchi, S.; Hamishekar, H.; Torbati, M.; Kharazmi, M.S.; Savage, G.P.; Tan, C.; Jafari, S.M. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel. Adv. Colloid Interface Sci. 2023, 311, 102833. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; García-Simarro, M.P.; Navarro-Simarro, P.; Gómez-Gómez, L.; Ahrazem, O.; Niza, E. A review on the encapsulation of “eco-friendly” compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int. J. Biol. Macromol. 2024, 280, 136030. [Google Scholar] [CrossRef]
- Bence, R.; Barolo, S.M.; Wunderlin, D.A.; Martín, S.E.; Cano, N.C.H. Novel pesticides design: Co-encapsulation of citral and cyproconazole for the control of Botrytis cinerea using biocompatible nano-carriers. Pest Manag. Sci. 2024, 80, 6096–6106. [Google Scholar] [CrossRef]
- Yu, B.; Cheng, J.; Fang, Y.; Xie, Z.; Xiong, Q.; Zhang, H.; Shang, W.; Wurm, F.R.; Liang, W.; Wei, F.; et al. Multi-Stimuli-Responsive, Topology-Regulated, and Lignin-Based Nano/Microcapsules from Pickering Emulsion Templates for Bidirectional Delivery of Pesticides. ACS Nano 2024, 18, 10031–10044. [Google Scholar] [CrossRef]
- Sedeek, M.S.; Al-Mahallawi, A.M.; Hussien, R.A.A.; Ali, A.M.A.; Naguib, I.A.; Mansour, M.K. Hexosomal Dispersion: A Nano-Based Approach to Boost the Antifungal Potential of Citrus Essential Oils against Plant Fungal Pathogens. Molecules 2021, 26, 6284. [Google Scholar] [CrossRef]
- Wang, P.; Gravel, V.; Bueno, V.; Galhardi, J.A.; Ghoshal, S.; Wilkinson, K.J.; Bayen, S. Thermal Degradation of Conventional and Nanoencapsulated Azoxystrobin due to Processing in Water, Spiked Strawberry, and Incurred Strawberry Models. ACS Agric. Sci. Technol. 2022, 2, 960–968. [Google Scholar] [CrossRef]
- Kumar, R.; Duhan, J.S.; Manuja, A.; Kaur, P.; Sadh, P.K. Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan-Gum Acacia Nanocomposites. J. Xenobiotics 2022, 12, 74–90. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Oriola, A.O.; Onwudiwe, D.C.; Oyedeji, A.O. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules 2022, 12, 627. [Google Scholar] [CrossRef]
- Malik, A.Q.; Mir, T.u.G.; Kumar, D.; Mir, I.A.; Rashid, A.; Ayoub, M.; Shukla, S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ. Sci. Pollut. Res. Int. 2023, 30, 69796–69823. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Z.; Sun, D.-W. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS Nano 2021, 15, 12655–12686. [Google Scholar] [CrossRef]
- Yu, Y.; Dai, W.; Luan, Y. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. Environ. Pollut. 2023, 317, 120784. [Google Scholar] [CrossRef] [PubMed]
- García-Álvarez, R.; Vallet-Regí, M. Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. Nanomaterials 2021, 11, 888. [Google Scholar] [CrossRef]
- Spagnoletti, F.N.; Kronberg, F.; Spedalieri, C.; Munarriz, E.; Giacometti, R. Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. J. Environ. Manag. 2021, 297, 113434. [Google Scholar] [CrossRef]
- Paterlini, P.; Rodríguez, C.; Ledesma, A.; Pereyra, J.; Costa, J.S.D.; Álvarez, A.; Romero, C.M. Characterization of biosynthesized silver nanoparticles from Streptomyces aqueous extract and evaluation of surface-capping proteins involved in the process. Nano-Struct. Nano-Objects 2021, 26, 100755. [Google Scholar] [CrossRef]
- Gao, F.; Cui, B.; Wang, C.; Li, X.; Li, B.; Zhan, S.; Shen, Y.; Zhao, X.; Sun, C.; Wang, C.; et al. Nano-EMB-SP improves the solubility, foliar affinity, photostability and bioactivity of emamectin benzoate. Pest Manag. Sci. 2022, 78, 3717–3724. [Google Scholar] [CrossRef]
- Jia, Y.; Kang, L.; Wu, Y.; Zhou, C.; Cai, R.; Zhang, H.; Li, J.; Chen, Z.; Kang, D.; Zhang, L.; et al. Nano-selenium foliar intervention-induced resistance of cucumber to Botrytis cinerea by activating jasmonic acid biosynthesis and regulating phenolic acid and cucurbitacin. Pest Manag. Sci. 2024, 80, 554–568. [Google Scholar] [CrossRef]
- Hong, J.; Wang, L.; Sun, Y.; Zhao, L.; Niu, G.; Tan, W.; Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci. Total Environ. 2016, 563–564, 904–911. [Google Scholar] [CrossRef]
- Bombo, A.B.; Pereira, A.E.S.; Lusa, M.G.; de Medeiros Oliveira, E.; de Oliveira, J.L.; Campos, E.V.R.; de Jesus, M.B.; Oliveira, H.C.; Fraceto, L.F.; Mayer, J.L.S. A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. J. Agric. Food Chem. 2019, 67, 4453–4462. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Wang, P.; Yin, H. Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials 2023, 16, 3097. [Google Scholar] [CrossRef]
- Avellan, A.; Yun, J.; Morais, B.P.; Clement, E.T.; Rodrigues, S.M.; Lowry, G.V. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. Environ. Sci. Technol. 2021, 55, 13417–13431. [Google Scholar] [CrossRef]
- Fincheira, P.; Hoffmann, N.; Tortella, G.; Ruiz, A.; Cornejo, P.; Diez, M.C.; Seabra, A.B.; Benavides-Mendoza, A.; Rubilar, O. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. Nanomaterials 2023, 13, 1978. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef]
- Kumar, R.; Najda, A.; Duhan, J.S.; Kumar, B.; Chawla, P.; Klepacka, J.; Malawski, S.; Sadh, P.K.; Poonia, A.K. Assessment of Antifungal Efficacy and Release Behavior of Fungicide-Loaded Chitosan-Carrageenan Nanoparticles Against Phytopathogenic Fungi. Polymers 2021, 14, 41. [Google Scholar] [CrossRef]
- Li, R.; Jia, X.; Xie, H.; Wang, X.; Wen, J.; Yu, G.; Yin, H. Vali@mPEG-TK-COS: A Dual-Function Nano-Pesticide for Fungicidal Action and Plant Immune Modulation. Mod. Agric. 2024, 2, e70001. [Google Scholar] [CrossRef]
- Ciobanu, L.T.; Bînzari, V.; Dima, Ș.-O.; Farcasanu, I.C.; Oancea, F.; Constantinescu-Aruxandei, D. The Clothes Matter—Exploiting Agronomical Functions of Trichogenic Selenium Nanoparticles Sharing Activities with Biological Systems Wherein (Were) Formed. Agronomy 2024, 14, 190. [Google Scholar] [CrossRef]
- Gupta, G.; Hamawandi, B.; Sheward, D.J.; Murrell, B.; Hanke, L.; McInerney, G.; Blosi, M.; Costa, A.L.; Toprak, M.S.; Fadeel, B. Silver nanoparticles with excellent biocompatibility block pseudotyped SARS-CoV-2 in the presence of lung surfactant. Front. Bioeng. Biotechnol. 2022, 10, 1083232. [Google Scholar] [CrossRef] [PubMed]
- Rosini, E.; Boreggio, M.; Verga, M.; Caldinelli, L.; Pollegioni, L.; Fasoli, E. The D-amino acid oxidase-carbon nanotubes: Evaluation of cytotoxicity and biocompatibility of a potential anticancer nanosystem. 3 Biotech 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Parada, J.; Tortella, G.; Seabra, A.B.; Fincheira, P.; Rubilar, O. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides Against Botrytis cinerea and Fusarium oxysporum. Antibiotics 2024, 13, 215. [Google Scholar] [CrossRef]
- Jamdagni, P.; Rana, J.S.; Khatri, P. Comparative study of antifungal effect of green and chemically synthesised silver nanoparticles in combination with carbendazim, mancozeb, and thiram. IET Nanobiotechnol. 2018, 12, 1102–1107. [Google Scholar] [CrossRef]
- Luque-Jacobo, C.M.; Cespedes-Loayza, A.L.; Echegaray-Ugarte, T.S.; Cruz-Loayza, J.L.; Cruz, I.; de Carvalho, J.C.; Goyzueta-Mamani, L.D. Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules 2023, 28, 4838. [Google Scholar] [CrossRef]
- Zhao, F.; Xin, X.; Cao, Y.; Su, D.; Ji, P.; Zhu, Z.; He, Z. Use of Carbon Nanoparticles to Improve Soil Fertility, Crop Growth and Nutrient Uptake by Corn (Zea mays L.). Nanomaterials 2021, 11, 2717. [Google Scholar] [CrossRef]
- Ali, M.A.; Ahmed, T.; Wu, W.; Hossain, A.; Hafeez, R.; Masum, M.I.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity Against Plant Pathogens. Nanomaterials 2020, 10, 1146. [Google Scholar] [CrossRef]
- Khan, S.T.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z.; Khan, M.; Khan, M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants 2021, 11, 109. [Google Scholar] [CrossRef]
- Grillo, R.; Rosa, A.H.; Fraceto, L.F. Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere 2015, 119, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Ekvall, M.T.; Hedberg, J.; Odnevall Wallinder, I.; Malmendal, A.; Hansson, L.-A.; Cedervall, T. Adsorption of bio-organic eco-corona molecules reduces the toxic response to metallic nanoparticles in Daphnia magna. Sci. Rep. 2021, 11, 10784. [Google Scholar] [CrossRef] [PubMed]
- Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A.; Błaszczyk, M. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl. Soil Ecol. 2017, 119, 128–137. [Google Scholar] [CrossRef]
- Mishra, S.; Yang, X.; Singh, H.B. Evidence for positive response of soil bacterial community structure and functions to biosynthesized silver nanoparticles: An approach to conquer nanotoxicity? J. Environ. Manag. 2020, 253, 109584. [Google Scholar] [CrossRef]
- Lin, J.; He, F.; Su, B.; Sun, M.; Owens, G.; Chen, Z. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J. Hazard. Mater. 2019, 379, 120832. [Google Scholar] [CrossRef]
Fungicides | ||
---|---|---|
Chemical Class | Active Ingredient | Mode of Action |
Strobilurins (QoI) | Azoxystrobin, Pyraclostrobin, Trifloxystrobin | Inhibits mitochondrial respiration in fungi. |
Triazoles (DMI) | Tebuconazole, Propiconazole, Difenoconazole, Protioconazole, Mefentrifluconazole | Inhibits ergosterol biosynthesis, disrupting fungal cell membranes. |
Carboxamides (SDHI) | Boscalid, Fluxapyroxad, Penthiopyrad, Bixafem | Inhibits fungal respiration by targeting succinate dehydrogenase. |
Inorganic | Copper Sulfate, Sulfur | Multi-site activity, interfering with several fungal processes. |
Dithiocarbamates | Mancozeb, Thiram | Multi-site contact activity. |
Phosphonates | Fosetyl-Al, Phosphorus Acid | Induces plant defenses and inhibits fungal growth. |
Phenylamides | Mefenoxam, Metalaxyl | Inhibits RNA synthesis in fungi. |
Feature | Traditional Fungicides | Nano-Based Alternatives |
---|---|---|
Active Ingredient Delivery | Broad application and systemic or contact action. | Targeted delivery to plant surfaces or fungal pathogens. |
Application Dosage | Typically, higher doses are required for effective control. | Potential for significantly lower doses due to enhanced delivery and efficacy. |
Application Frequency | Often requires repeated applications throughout the growing season. | Potential for reduced application frequency due to enhanced persistence and controlled release. |
Mechanism of Action | Primarily targets broad metabolic pathways in fungi. | Can involve targeted disruption of specific fungal processes, enhanced adhesion, and direct antimicrobial activity of nanoparticles. Multi-target effect. |
Efficacy | Generally effective but prone to resistance development with overuse. | Show promise for improved efficacy, including against fungicide-resistant strains. |
Environmental Fate | Can persist in soil and water, leading to contamination. | Potential for reduced environmental persistence due to lower application rates and targeted delivery. Environmental fate of nanoparticles is still under investigation. |
Resistance Development | Overuse is a significant driver of fungicide resistance. | Potential to mitigate resistance development through novel mechanisms and targeted action. |
Cost | Generally, lower initial cost per unit. | Generally, higher initial production cost. Potential for lower overall cost due to reduced application frequency and dosage. |
Regulation | Well-established regulatory frameworks in most regions. | Regulatory frameworks are still evolving for nano-based pesticides in many regions. |
Commercial Availability | Widely available and commonly used in agriculture. | Currently, limited commercial availability, with ongoing research and development. |
Public Perception | Generally accepted due to a long history of use, though concerns about environmental impact exist. | Public perception is evolving, with potential concerns about the safety and long-term effects of nanotechnology in agriculture. |
Long-Term Effects | Well-documented long-term environmental and ecological effects. | Long-term environmental and ecological effects of many nanomaterials are still under investigation. |
Feature | Nano-Biofungicides (Figure 1) | Bio-Nano Fungicides (Figure 2) |
---|---|---|
Primary Active Ingredient | Conventional synthetic fungicides (e.g., pyraclostrobin and epoxiconazole) | Metals in their elemental form (Ag0 and Cu0) and biomolecules (lipids, proteins, carbohydrates, etc.) |
Nanotechnology Role | Nanoencapsulation of synthetic fungicides for improved delivery, stability, and controlled release. | Nanotechnology merges elemental metals and biomolecules to form stable, efficient, and versatile biological nanoparticles. |
Core Composition | Nanoencapsulated synthetic chemical fungicide. | Metallic nanoparticle core (e.g., silver and copper) surrounded by a biological “bio-corona”. |
Bio-Corona | Typically, not present. The nano aspect is the enclosure of the chemical fungicide. | Present, complex structure of proteins, lipids, carbohydrates, etc. Classified as “hard” and “soft” corona layers. |
Mechanism of Action | Enhanced delivery of chemical fungicide directly to the pathogen. | Enhanced delivery of biological control agents and direct effect of metallic nanoparticles. Additionally, influenced by the bio-corona. |
Environmental Impact | Potential for reduced chemical usage but still involves synthetic chemicals. | Generally considered more environmentally friendly due to the use of biological agents. |
Key Advantages | Increased stability, controlled release, improved absorption, reduced dosage. | Enhanced effectiveness due to bio-corona, improved stability, targeted delivery, and reduced environmental impact. |
Examples | Nanocapsules containing pyraclostrobin, lipid nanoparticles with cyproconazole. | Silver or copper nanoparticles synthesized using plant extracts or microorganisms, with associated bio-corona. |
Research Focus | Focused on optimizing the efficiency and controlled release of chemical-based fungicides. | Focused on understanding and optimizing the structure and function of the bio-corona. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dávila Costa, J.S.; Romero, C.M. Nano-Biofungicides and Bio-Nanofungicides: State of the Art of Innovative Tools for Controlling Resistant Phytopathogens. Biophysica 2025, 5, 15. https://doi.org/10.3390/biophysica5020015
Dávila Costa JS, Romero CM. Nano-Biofungicides and Bio-Nanofungicides: State of the Art of Innovative Tools for Controlling Resistant Phytopathogens. Biophysica. 2025; 5(2):15. https://doi.org/10.3390/biophysica5020015
Chicago/Turabian StyleDávila Costa, José Sebastian, and Cintia Mariana Romero. 2025. "Nano-Biofungicides and Bio-Nanofungicides: State of the Art of Innovative Tools for Controlling Resistant Phytopathogens" Biophysica 5, no. 2: 15. https://doi.org/10.3390/biophysica5020015
APA StyleDávila Costa, J. S., & Romero, C. M. (2025). Nano-Biofungicides and Bio-Nanofungicides: State of the Art of Innovative Tools for Controlling Resistant Phytopathogens. Biophysica, 5(2), 15. https://doi.org/10.3390/biophysica5020015