The Interspecific Abundance–Occupancy Relationship in Invertebrate Metacommunities Associated with Intertidal Mussel Patches
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackburn, T.M.; Cassey, P.; Gaston, K.J. Variations on a theme: Sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. J. Anim. Ecol. 2006, 75, 1426–1439. [Google Scholar] [CrossRef]
- Izabel-Shen, D.; Höger, A.L.; Jürgens, K. Abundance–occupancy relationships along taxonomic ranks reveal a consistency of niche differentiation in marine bacterioplankton with distinct lifestyles. Front. Microbiol. 2021, 12, 690712. [Google Scholar] [CrossRef]
- Ten Caten, C.; Holian, L.; Dallas, T. Weak but consistent abundance–occupancy relationships across taxa, space, and time. Global Ecol. Biogeogr. 2022, 31, 968–977. [Google Scholar] [CrossRef]
- Foggo, A.; Bilton, D.T.; Rundle, S.D. Do developmental mode and dispersal shape abundance–occupancy relationships in marine macroinvertebrates? J. Anim. Ecol. 2007, 76, 695–702. [Google Scholar] [CrossRef]
- Webb, T.J.; Tyler, E.H.M.; Somerfield, P.J. Life history mediates large-scale population ecology in marine benthic taxa. Mar. Ecol. Prog. Ser. 2009, 396, 293–306. [Google Scholar] [CrossRef]
- Buckley, H.L.; Freckleton, R.P. Understanding the role of species dynamics in abundance–occupancy relationships. J. Ecol. 2010, 98, 645–658. [Google Scholar] [CrossRef]
- Verberk, W.C.E.P.; van der Velde, G.; Esselink, H. Explaining abundance–occupancy relationships in specialists and generalists: A case study on aquatic macroinvertebrates in standing waters. J. Anim. Ecol. 2010, 79, 589–601. [Google Scholar] [CrossRef]
- Guedo, D.D.; Lamb, E.G. Temporal changes in abundance–occupancy relationships within and between communities after disturbance. J. Veg. Sci. 2013, 24, 607–615. [Google Scholar] [CrossRef]
- Faulks, L.; Svanbäck, R.; Ragnarsson-Stabo, H.; Eklöv, P.; Östman, Ö. Intraspecific niche variation drives abundance–occupancy relationships in freshwater fish communities. Am. Nat. 2015, 186, 272–283. [Google Scholar] [CrossRef]
- Suhonen, J.; Jokimaki, J. Temporally stable species occupancy frequency distributions and abundance–occupancy relationship patterns in urban wintering bird asseemblages. Front. Ecol. Evol. 2019, 7, 129. [Google Scholar] [CrossRef]
- Manne, L.L.; Veit, R.R. Temporal changes in abundance–occupancy relationships over 40 years. Ecol. Evol. 2020, 10, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Boraks, A.; Amend, A.S. Fungi in soil and understory have coupled distribution patterns. PeerJ 2021, 9, e11915. [Google Scholar] [CrossRef]
- Şen, B.; Akçakaya, H.R. Interspecific variability in demographic processes affects abundance-occupancy relationships. Oecologia 2022, 198, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Suárez, D.; Arribas, P.; Macías-Hernández, N.; Emerson, B.C. Dispersal ability and niche breadth influence interspecific variation in spider abundance and occupancy. Royal Soc. Open Sci. 2023, 10, 230051. [Google Scholar] [CrossRef]
- Matas-Granados, L.; Draper, F.C.; Cayuela, L.; de Aledo, J.G.; Arellano, G.; Ben Saadi, C.; Baker, T.R.; Phillips, O.L.; Honorio Coronado, E.N.; Ruokolainen, K.; et al. Understanding different dominance patterns in western Amazonian forests. Ecol. Lett. 2024, 27, e14351. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.S.K. Intraspecific abundance–occupancy–patchiness relations in the intertidal benthic macrofauna of a cool-temperate North Sea mudflat. Estuaries Coast. 2022, 45, 827–838. [Google Scholar] [CrossRef]
- Barnes, R.S.K. Interspecific abundance-occupancy relations along estuarine gradients. Mar. Environ. Res. 2022, 181, 105755. [Google Scholar] [CrossRef] [PubMed]
- van Genne, B.; Scrosati, R.A. The interspecific abundance–occupancy relationship in rocky intertidal communities. Mar. Biol. Res. 2022, 18, 13–18. [Google Scholar] [CrossRef]
- Raffaelli, D.; Hawkins, S. Intertidal Ecology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Menge, B.A.; Branch, G.M. Rocky intertidal communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 221–251. [Google Scholar]
- Cameron, N.M.; Scrosati, R.A.; Valdivia, N.; Meunier, Z.D. Global taxonomic and functional patterns in invertebrate assemblages from rocky-intertidal mussel beds. Sci. Rep. 2024, 14, 26. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Bustamante, R.H.; Branch, G.M. Large scale patterns and trophic structure of southern African rocky shores: The roles of geographic variation and wave exposure. J. Biogeogr. 1996, 23, 339–351. [Google Scholar] [CrossRef]
- Lindegarth, M.; Gamfeldt, L. Comparing categorical and continuous ecological analyses: Effects of wave exposure on rocky shores. Ecology 2005, 86, 1346–1357. [Google Scholar] [CrossRef]
- Heaven, C.S.; Scrosati, R.A. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 2008, 369, 13–23. [Google Scholar] [CrossRef]
- Arribas, L.P.; Donnarumma, L.; Palomo, M.G.; Scrosati, R.A. Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Mar. Biodiv. 2014, 44, 203–211. [Google Scholar] [CrossRef]
- Mathieson, A.C.; Penniman, C.A.; Harris, L.G. Northwest Atlantic rocky shore ecology. In Intertidal and Littoral Ecosystems (Ecosystems of the World); Mathieson, A.C., Nienhuis, P.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 24, pp. 109–191. [Google Scholar]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef]
- Tam, J.C.; Scrosati, R.A. Distribution of cryptic mussel species (Mytilus edulis and M. trossulus) along wave exposure gradients on northwest Atlantic rocky shores. Mar. Biol. Res. 2014, 10, 51–60. [Google Scholar] [CrossRef]
- Innes, D.J.; Bates, J.A. Morphological variation of Mytilus edulis and Mytilus trossulus in eastern Newfoundland. Mar. Biol. 1999, 133, 691–699. [Google Scholar] [CrossRef]
- Hunt, H.L.; Scheibling, R.E. Physical and biological factors influencing mussel (Mytilus trossulus, M. edulis) settlement on a wave-exposed rocky shore. Mar. Ecol. Prog. Ser. 1996, 142, 135–145. [Google Scholar] [CrossRef]
- Tam, J.C.; Scrosati, R.A. Mussel and dogwhelk distribution along the north-west Atlantic coast: Testing predictions derived from the abundant-centre model. J. Biogeogr. 2011, 38, 1536–1545. [Google Scholar] [CrossRef]
- Scrosati, R.A.; Arribas, L.P.; Donnarumma, L. Abundance data for invertebrate assemblages from intertidal mussel beds along the Atlantic Canadian coast. Ecology 2020, 101, e03137. [Google Scholar] [CrossRef]
- Holt, A.R.; Gaston, K.J.; He, F. Occupancy–abundance relationships and spatial distribution: A review. Basic Appl. Ecol. 2002, 3, 1–13. [Google Scholar] [CrossRef]
- He, F.; Gaston, K.J. Estimating species abundance from occurrence. Am. Nat. 2000, 156, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, R.A. Abundance and Occupancy Data for Invertebrate Species Associated to Intertidal Mussel Patches. Figshare Dataset. 2024. [Google Scholar] [CrossRef]
- Bertness, M.D. Atlantic Shorelines: Natural History and Ecology; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Benedetti-Cecchi, L.; Trussell, G.C. Intertidal rocky shores. In Marine Community Ecology and Conservation; Bertness, M.D., Bruno, J.F., Silliman, B.R., Stachowicz, J.J., Eds.; Sinauer Associates: Sunderland, MA, USA, 2014; pp. 203–225. [Google Scholar]
- Hawkins, S.J.; Pack, K.E.; Firth, L.B.; Mieszkowska, N.; Evans, A.J.; Martins, G.M.; Åberg, P.; Adams, L.C.; Arenas, F.; Boaventura, D.M.; et al. The intertidal zone of the north-east Atlantic region: Pattern and process. In Interactions in the Marine Benthos: Global Patterns and Processes; Hawkins, S.J., Bohn, K., Firth, L.B., Williams, G.A., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 7–46. [Google Scholar]
- Menge, B.A.; Caselle, J.E.; Milligan, K.; Gravem, S.A.; Gouhier, T.C.; White, J.W.; Barth, J.A.; Blanchette, C.A.; Carr, M.H.; Chan, F.; et al. Integrating coastal oceanic and benthic ecological approaches for understanding large-scale meta-ecosystem dynamics. Oceanography 2019, 32, 38–49. [Google Scholar] [CrossRef]
- Menge, B.A.; Sutherland, J.P. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 1987, 130, 730–757. [Google Scholar] [CrossRef]
- Vellend, M. The Theory of Ecological Communities; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Viana, D.S.; Chase, J.M. Spatial scale modulates the inference of metacommunity assembly processes. Ecology 2019, 100, e02576. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Rybicki, J.; Abrego, N. What can observational data reveal about metacommunity processes? Ecography 2019, 42, 1877–1886. [Google Scholar] [CrossRef]
- Thurman, L.L.; Barner, A.K.; Garcia, T.S.; Chestnut, T. Testing the link between species interactions and species co-occurrence in a trophic network. Ecography 2019, 42, 1658–1670. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Cazelles, K.; Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 2020, 23, 1050–1063. [Google Scholar] [CrossRef]
- Menge, B.A. Indirect effects in marine rocky intertidal interaction webs: Patterns and importance. Ecol. Monogr. 1995, 65, 21–74. [Google Scholar] [CrossRef]
Location | k (95% C.I.) | Adjusted R2 (p) | N |
---|---|---|---|
Webber Cove (wave-sheltered) | 0.32 (0.13–0.51) | 0.51 (0.0004) | 20 |
Halifax Harbourfront (wave-sheltered) | 0.65 (0.29–1.02) | 0.94 (<0.0001) | 12 |
Casino Nova Scotia (wave-sheltered) | 0.43 (0.11–0.76) | 0.67 (0.0006) | 13 |
Tor Bay Provincial Park (wave-exposed) | 1.02 (0.59–1.45) | 0.92 (<0.0001) | 28 |
Crystal Crescent Beach (wave-exposed) | 1.23 (0.66–1.79) | 0.94 (<0.0001) | 24 |
Kejimkujik National Park (wave-exposed) | 1.00 (0.64–1.36) | 0.95 (<0.0001) | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scrosati, R.A. The Interspecific Abundance–Occupancy Relationship in Invertebrate Metacommunities Associated with Intertidal Mussel Patches. Ecologies 2025, 6, 4. https://doi.org/10.3390/ecologies6010004
Scrosati RA. The Interspecific Abundance–Occupancy Relationship in Invertebrate Metacommunities Associated with Intertidal Mussel Patches. Ecologies. 2025; 6(1):4. https://doi.org/10.3390/ecologies6010004
Chicago/Turabian StyleScrosati, Ricardo A. 2025. "The Interspecific Abundance–Occupancy Relationship in Invertebrate Metacommunities Associated with Intertidal Mussel Patches" Ecologies 6, no. 1: 4. https://doi.org/10.3390/ecologies6010004
APA StyleScrosati, R. A. (2025). The Interspecific Abundance–Occupancy Relationship in Invertebrate Metacommunities Associated with Intertidal Mussel Patches. Ecologies, 6(1), 4. https://doi.org/10.3390/ecologies6010004