A Conceptual Framework for the Apibotanical Evaluation of Different Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Design
2.2. Statistical Evaluation of Sampling
2.3. Apibotanical Interest Index (ABI) Development
2.4. Agroecosystem Apibotanical Interest Index (AABI) Development
3. Results and Discussion
3.1. Composition and Structure of Agroecosystem Flora
3.2. Apibotanical Interest Index (ABI)
3.3. Agroecosystem Apibotanical Interest Index (AABI) Development
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tscharntke, T.; Steffan-Dewenter, I.; Kruess, A.; Thies, C. Characteristics of insect populations on habitat fragments: A mini review. Ecol. Res. 2002, 17, 229–239. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B.; Manning, A.D. Biodiversity, ecosystem function, and resilience: Ten guiding principles for commodity production landscapes. Front. Ecol. Environ. 2006, 4, 80–86. [Google Scholar] [CrossRef]
- Seeley, T. The Wisdom of the Hive: The Social Physiology of Honeybee Colonies; Harvard Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Steffan-Dewenter, I.; Münzenberg, U.; Bürger, C.; Thies, C.; Tscharntke, T. Scale dependent. Effects of landscape context on three pollinator guilds. Ecology 2002, 83, 1421–1432. [Google Scholar] [CrossRef]
- Garbuzov, M.; Couvillon, M.; Schürch, R.; Ratnieks, F. Honey bee dance decoding and pollen-load analysis show limited foraging on spring-flowering oilseed rape, a potential source of neonicotinoid contamination. Agric. Ecosyst. Environ. 2015, 203, 62–68. [Google Scholar] [CrossRef]
- Danner, N.; Molitor, A.M.; Schiele, S.; Härtel, S.; Steffan-Dewenter, I. Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecol. Appl. 2016, 26, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Hemberger, J.; Witynski, G.; Gratton, C. Floral resource continuity boosts bumble bee colony performance relative to variable floral resources. Ecol. Entomol. 2022, 47, 703–712. [Google Scholar] [CrossRef]
- Timberlake, T.P.; Vaughan, I.P.; Baude, M.; Memmott, J. Bumblebee colony density on farmland is influenced by late-summer nectar supply and garden cover. J. Appl. Ecol. 2021, 58, 1006–1016. [Google Scholar] [CrossRef]
- Scheper, J.; Bommarco, R.; Holzschuh, A.; Potts, S.G.; Riedinger, V.; Roberts, S.P.; Rundlöf, M.; Smith, H.G.; Steffan-Dewenter, I.; Wickens, J.B.; et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 2015, 52, 1165–1175. [Google Scholar] [CrossRef]
- Cole, L.J.; Brocklehurst, S.; Robertson, D.; Harrison, W.; McCracken, D.I. Exploring the interactions between resource availability and the utilization of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 2017, 246, 157–167. [Google Scholar] [CrossRef]
- Maurer, C.; Sutter, L.; Martínez-Núñez, C.; Pellissier, L.; Albrecht, M. Different types of semi-natural habitat are required to sustain diverse wild bee communities across agricultural landscapes. J. Appl. Ecol. 2022, 59, 2604–2615. [Google Scholar] [CrossRef]
- Taki, H.; Kevan, P.G.; Viana, B.F.; Silva, O.F.; Buck, M. Artificial covering on trap nests improves the colonization of trap-nesting wasps. J. Appl. Ecol. 2007, 132, 225–229. [Google Scholar] [CrossRef]
- Tscharntke, T.; Brandl, R. Plant-insect interactions in fragmented landscapes. Annu. Rev. Entomol. 2004, 49, 405–430. [Google Scholar] [CrossRef]
- Van de Koppel, J.; Bardgett, R.D.; Bengtsson, J.; Rodriguez-Barrueco, C.; Rietkerk, M.; Wassen, J.; Wolters, V. The effects of spatial scale on trophic interactions. Ecosystems 2005, 8, 801–807. [Google Scholar] [CrossRef]
- Dunning, J.B.; Danielson, B.J.; Polliam, H.R. Ecological processes that affect populations in complex landscapes. Oikos 1992, 65, 169–175. [Google Scholar] [CrossRef]
- Westrich, P. Habitat requirements of central european bees and the problems of partial habitats. In The Conservation of Bees; Matheson, A., Buchmann, S.L., O’Toole, C., Westrich, P., Williams, I., Eds.; Academic Press: London, UK, 1996; pp. 1–6. [Google Scholar]
- Díaz, R.; Niell, S.; Cesio, M.V.; Heinzen, H. Floral food resources for Apis mellifera (Hymenoptera: Apidae) in a mountain forest area in Uruguay. Agrociencia Urug. 2021, 25, e426. [Google Scholar] [CrossRef]
- Harris, C.; Balfour, N.J.; Ratnieks, F.L. Seasonal variation in the general availability of floral resources for pollinators in northwest Europe: A review of the data. Biol. Conserv. 2024, 298, 110774. [Google Scholar] [CrossRef]
- Garbuzov, M.; Balfour, N.J.; Shackleton, K.; Al Toufailia, H.; Scandian, L.; Ratnieks, F.L. Multiple methods of assessing nectar foraging conditions indicate peak foraging difficulty in late season. Insect. Conserv. Divers. 2020, 13, 532–542. [Google Scholar] [CrossRef]
- Sponsler, D.; Dominik, C.; Biegerl, C.; Honchar, H.; Schweiger, O.; Steffan-Dewenter, I. High rates of nectar depletion in summer grasslands indicate competitive conditions for pollinators. Oikos 2024, 2024, e10495. [Google Scholar] [CrossRef]
- Meikle, W.G.; Rector, B.G.; Mercadier, G.; Holst, N. Within-day variation in continuous hive weight data as a measure of honey bee colony activity. Apidologie 2008, 39, 694–707. [Google Scholar] [CrossRef]
- Timberlake, T.P.; Vaughan, I.P.; Memmott, J. Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J. Appl. Ecol. 2019, 56, 1585–1596. [Google Scholar] [CrossRef]
- Cesio, V.; Niell, S.; Díaz, R.; Jesús, F.; Gérez, N.; Santos, E.; Heinzen, H.; Franco, J.; Notte, G.; Cancela, H. Estudio de la Distribución de Residuos de Agroquímicos en Productos de la Colmena y su Relación Con Las Zonas de Producción Apícola del País. FPTA INIA Nº 2020; Volume 89, p. 34. Available online: https://inia.uy/sites/default/files/publications/2024-10/Inia-Fpta-89-proyecto-320-2020.pdf (accessed on 1 November 2024).
- Braun-Blanquet, J. Fitosociología. Bases Para el Estudio de las Comunidades Vegetales; Blume: Madrid, Spain, 1979; 820p. [Google Scholar]
- Dengler, J. Phytosociology. Int. Encycl. Geogr. People Earth Environ. Technol. 2016, 12, 1–6. [Google Scholar] [CrossRef]
- Delaplane, K.; Van der Steen, J.; Guzman, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 2013, 52, 5–7. [Google Scholar] [CrossRef]
- Core Team R. Core Team R: A Language and Environment for Statistical Computing, R Development V4.4.1.; R Foundation for Statistical Computing: Vienna, Austria, 2005.
- Buddle, C.M.; Beguin, J.; Bolduc, E.; Mercado, A.; Sackett, T.E.; Selby, D.R.; Varady-Burgos, M.G.; Sánchez, A.C. Preferencias alimenticias en las mieles inmaduras de Apis mellifera en el Chaco Serrano (Jujuy, Argentina). Bol. Soc. Argent. Bot. 2014, 49, 41–50. [Google Scholar]
- Lambshead, P.J.D.; Platt, H.M.; Shaw, K.M. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist. 1983, 17, 859–874. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Matteucci, S.D. La cuestión del patrón y la escala en la ecología del paisaje. In Sistemas Ambientales Complejos: Herramientas de Análisis Espacial; Matteucci, S.D., Buzai, G.D., Eds.; EUDEBA: Buenos Aires, Argentina, 1998; pp. 219–248. [Google Scholar]
- Magurran, A. Measuring Biological Diversity; Blackwell Publishing: Malden, MA, USA, 2004; 70p. [Google Scholar]
- Brussa, C.; Grela, I. Flora Arbórea del Uruguay. In Con Énfasis en Las Especies de Rivera y Tacuarembó; COFUSA: Montevideo, Uruguay, 2007; p. 544. ISBN 9974963346. [Google Scholar]
- Crane, E. The plant resources of honeybee. Apiacta 1991, 26, 57–64. [Google Scholar]
- Andrada, A.C. Flora utilizada por Apis mellifera L. en el sur del Caldenal (Provincia Fitogeográfica del Espinal) Argentina. Rev. Mus. Argent. Cienc. Nat. 2003, 5, 329–336. [Google Scholar] [CrossRef]
- Basilio, A.M. Cosecha polínica por Apis mellifera (Hymenoptera) en el bajo Delta del Paraná: Comportamiento de las abejas y diversidad del polen. Rev. Mus. Argent. Cienc. Nat. 2000, 2, 111–121. [Google Scholar] [CrossRef]
- Ugland, K.I.; Gray, J.S.; Ellingsen, K.E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 2003, 72, 888–897. [Google Scholar] [CrossRef]
- Loreau, M.; Mouquet, N.; Holt, R.D. Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 2003, 6, 673–679. [Google Scholar] [CrossRef]
- Dimitrakopoulos, P.G.; Schmid, B. Biodiversity effects increase linearly with biotope space. Ecol. Lett. 2004, 7, 574–583. [Google Scholar] [CrossRef]
- Tellería, M.C. Palynological analysis of food reserves found in a nest of Bombus atratus (Hym. Apidae). Grana 1998, 37, 125–127. [Google Scholar] [CrossRef]
- Abrahamovich, A.; Tellería, M.C.; Díaz, N.B. Bombus species and their associated flora in Argentina. Bee World 2001, 82, 60–75. [Google Scholar] [CrossRef]
- Cranmer, M.J.; McCollin, L.; Ollerton, J. Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 2012, 121, 562–568. [Google Scholar] [CrossRef]
- Mostacedo, B.; Fredericksen, T. Manual de Métodos Básicos de Muestreo y Análisis en Ecología Vegetal; Proyecto de Manejo Froestal Sostenible (BOLFOR): Santa Cruz, Bolivia, 2000; Volume 87, pp. 1–92. Available online: http://www.bio-nica.info/Biblioteca/Mostacedo2000EcologiaVegetal.pdf (accessed on 1 November 2024).
- Potts, S.; Vulliamy, B.; Dafni, A.; Ne’eman, G.; Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 2010, 84, 2628–2642. [Google Scholar] [CrossRef]
- Lázaro, A.; Totland, O. Local floral composition and the behavior of pollinators: Attraction to foraging within experimental patches. Ecol. Entomol. 2010, 35, 652–661. [Google Scholar] [CrossRef]
- Roulston, T.H.; Karen, G. The role of resources and risks in regulating wild bee populations. Annu. Rev. Entomol. 2011, 56, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Pla, L. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia 2006, 31, 583–590. [Google Scholar]
- Beekman, M.; Ratnieks, W. Long-range foraging by the honeybee, Apis mellifera. Funct. Ecol. British Ecol. Soc. 2001, 14, 490–496. [Google Scholar] [CrossRef]
- Tylianakis, J.; Rand, T.; Kahmen, A.; Klein, A.; Buchmann, N.; Perner, J.; Tscharnktke, T. Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems. PLoS Biol. 2008, 6, e122. [Google Scholar] [CrossRef]
- Jha, S.; Kremen, C. Resource diversity and landscape -level homogeneity drive native bee foraging. Proc. Natl. Acad. Sci. USA 2013, 110, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Mc Gonigle, L.K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 2015, 52, 602–610. [Google Scholar] [CrossRef]
- Ekroos, J.; Ödman, A.M.; Andersson, G.K.; Birkhofer, K.; Herbertsson, L.; Klatt, B.K.; Rundlöf, M. Sparing land for biodiversity at multiple spatial scales. Front. Ecol. Evol. 2016, 3, 145. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Skorokhodova, S.; Yakovleva, M.; Sukhov, A.; Kutenkov, A.; Kutenkova, N.; Shcherbakov, A.; Meyke, E.; Delgado, M.d.M. Respuesta fenológica a nivel comunitario al cambio climático. Actas Acad. Nac. Cienc. EE UU 2013, 110, 13434–13439. [Google Scholar]
- Quint, M.; Delker, C.; Franklin, K.A.; Wigge, P.A.; Halliday, K.J.; van Zanten, M. Control molecular y genético de la termomorfogénesis de las plantas. Nat. Plants 2016, 2, 15190. [Google Scholar] [CrossRef] [PubMed]
- Babé, A.; Lavigne, T.; Séverin, J.P.; Nagel, K.A.; Walter, A.; Chaumont, F.; Batoko, H.; Beeckman, T.; Draye, X. Repression of early lateral root initiation events by transient water deficit in barley and maize. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 367, 1534–1541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borghi, M.; Fernie, A.R. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators’ Preferences and Seed and Fruit Set. Plant Physiol. 2017, 175, 1510–1524. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Prasad, P.V.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef]
- Achkar, M.; Domínguez, A.; Pesce, F. Los Recursos Naturales en el Actual Modelo de Desarrollo. Poster Central: Ecorregiones del Uruguay; Revista de la Educación del Pueblo: Montevideo, Uruguay, 2012; p. 92. [Google Scholar]
- Fagúndez, G.; Reinoso, D.; Aceñolaza, P. Caracterización y fenología de especies de interés apícola en el departamento Diamante (Entre Ríos, Argentina). Boletín Soc. Argent. Botánica 2016, 51, 243–267. [Google Scholar] [CrossRef]
- Basilio, A.M.; Romero, E.J. Variaciones anuales y estacionales en el contenido polínico de la miel de un colmenar RIA. Rev. Investig. Agropecu. 2002, 31, 41–58. Available online: https://www.redalyc.org/articulo.oa?id=86431103 (accessed on 4 February 2024).
- Granados-Argüello, R.; Villanueva-Gutiérrez, R.; Martínez-Hernández, E.; García Mayoral, L.; González de la Torre, J. Análisis melisopalinológico de mieles de Apis mellifera en la zona centro de Veracruz, México. Polibotanica 2020, 50, 147–163. [Google Scholar] [CrossRef]
- Miranda, D.E.; Molina, R.A.; Aquino, D.Y.; Pellizzer, N.A.; Berdún, A.; Fernández, L.C.; Huk, L.H. Flora utilizada por Apis mellifera L. y Tetragonisca fiebrigi Schwarz en 5 departamentos de la zona centro-norte de la Provincia de Misiones, Argentina. Yvyraretá: Rev. For. País Árboles. Eldorado (Misiones) UNaM. FCF 2018, 26, 38–54. Available online: https://rid.unam.edu.ar/handle/20.500.12219/2638?show=full (accessed on 1 November 2024).
- Salgado, C.R.G.; Piesko, G.; Tellería, M.C. Aporte de la melisopalinología al conocimiento de la flora melífera de un sector de la Provincia Fitogeográfica Chaqueña. Bol. Soc. Argent. Bot. 2014, 49, 513–524. [Google Scholar] [CrossRef]
- Reyes, N.J.; Asesor, P.N.; Albarracín, V.N.; García, M.E.; Espeche, M.L. Caracterización palinológica de la miel de un sector de la región chaqueña de la provincia de Tucumán (Argentina). Bol. Soc. Argent. Bot. 2019, 54, 367–379. [Google Scholar] [CrossRef]
- Gutiérrez, P.B.; Quiroz, D.L. Estudio melisopalinológico de dos mieles de la porción sur del valle de México. Polibotánica 2007, 23, 57–75. Available online: https://www.redalyc.org/pdf/621/62102304.pdf (accessed on 1 November 2024).
- Madanes, N.; Millones, A. Estudio del polen aéreo y su relación con la vegetación en un agroecosistema. Darwiniana 2004, 42, 51–62. [Google Scholar]
- Tellería, M.C.; Salgado, C.; Andrada, C. Rhamnaceae asociada a mieles fétidas en Argentina. Rev. Mus. Argent Cienc. Nat. 2006, 8, 237–241. [Google Scholar]
- Costa, M.C.; Vergara-Roig, V.A.; Kivatinitz, S. A melissopalynological study of artisanal honey produced in Catamarca (Argentina). Grana 2013, 52, 9–37. [Google Scholar] [CrossRef]
- Cabrera, M.M. Identidad de Las Mieles de la Región Nordeste del Distrito Oriental del Parque Chaqueño. Doctoral Thesis, Universidad Nacional del Nordeste, Facultad de Ciencias Agrarias, Corrientes, Argentina, 2021. Available online: http://repositorio.unne.edu.ar/handle/123456789/29641 (accessed on 1 November 2024).
- Daners, G.; Tellería, C. Native vs. introduced bee flora: A palynological survey of honeys from Uruguay. J. Apic. Res. 1998, 37, 221–229. Available online: https://www.researchgate.net/publication/323773206_Uruguay_Daners_Telleria_Journal_Apic_Res_1998 (accessed on 1 November 2024). [CrossRef]
- Méndez, M.; Sánchez, A.; Flores, F.; Lupo, L. Análisis polínico de mieles inmaduras en el sector oeste de las yungas de Jujuy (Argentina). Bol. Soc. Argent. Bot. 2016, 51, 449–462. [Google Scholar] [CrossRef]
- Fagúndez, G.A. Estudio de Los Recursos Nectaríferos y Poliníferos Utilizados Por Apis mellifera L. en Diferentes Ecosistemas del Departamento Diamante (Entre Ríos). Doctoral Thesis, UNS. Bahía Blanca, Provincia de Buenos Aires, Argentina, 2011. Available online: https://repositoriodigital.uns.edu.ar/handle/123456789/500 (accessed on 1 November 2024).
- Valtierra, M.; Bonifacino, J. Revisión taxonómica de Baccharis Sect. Heterothalamus (Less.) (Asteraceae: Asterae) en Uruguay. Boletín Soc. Argent. Botánica 2014, 49, 613–620. [Google Scholar] [CrossRef]
- Basilio, A.M.; Romero, E.J. Contenido polínico en las mieles de la región del Delta del Paraná (Argentina). Darwiniana 1996, 34, 113–120. Available online: https://www.ojs.darwin.edu.ar/index.php/darwiniana/article/view/384 (accessed on 1 November 2024).
- Basilio, A.M. Estudio Melitopalinológico de Los Recursos Alimentarios y de la Producción de un Colmenar en la Región del Delta del Paraná, Argentina. Doctoral Dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina, 1992. Available online: https://hdl.handle.net/20.500.12110/tesis_n3012_Basilio (accessed on 1 November 2024).
- Bazurro, D.; Díaz, R.; Sánchez, M. Tipificación de miel de Palma Butiá (Butia capitata) Durante la Floración de 1995–1996 en el Departamento de Rocha. Rocha: Universidad de la República. Documentos de Trabajo: 12, 1997, 29page. Available online: https://www.probides.org.uy/imagenes/ckfinder/files/files/Documentos%20de%20Trabajo/DT12.pdf (accessed on 1 November 2024).
- Alaniz-Gutiérrez, L.; Ail-Catzim, C.E.; Villanueva-Gutiérrez, R.; Delgadillo-Rodríguez, J.; Ortiz-Acosta, M.E.; García-Moya, E.; Medina Cervantes, T.S. Caracterización palinologica de las mieles del Valle de Mexicali, Baja California, México. Polibotánica 2017, 43, 257–285. [Google Scholar]
- Flores, F.; Sánchez, A. Primeros resultados de caracterización botánica de mieles de tetragonisca angustula Latreille (Apidae, Meliponinae) criadas en la localidad Los Naranjos-Orán–Salta. Bol. Soc. Argent. Bot. 2010, 45, 81–91. [Google Scholar]
- Perez de Zabalza, A. Análisis polínico de mieles de los valles pirenaicos navarros (España). In Actes del Simposi Internacional de Botànica “Pius Font i Quer” Vol. II Fanerogàmia; Institut d’Estudis Ilerdencs: Lleida, Spain, 1992; pp. 183–187. Available online: https://hdl.handle.net/10171/27665 (accessed on 1 November 2024).
- Hidalgo, M.I.; Cabezudo, B. Producción de néctar en matorrales del Sur de España. Acta Botánica Malacit. 1995, 20, 123–132. [Google Scholar] [CrossRef]
- Corbella, E.; Tejera, L.; Cernuschi, F. Calidad y origen botánico de mieles del noreste de Uruguay. Rev. INIA 2005, 3, 6–7. Available online: http://www.ainfo.inia.uy/digital/bitstream/item/215/1/111219220807150246.pdf (accessed on 1 November 2024).
- Basilio, A. Polen de las especies hidrófitas en las mieles del delta del Río Paraná (Argentina). Bol. Soc. Argent. Bot. 1996, 31, 231–234. Available online: https://botanicaargentina.org.ar/wp-content/uploads/2018/08/231-234011.pdf (accessed on 1 November 2024).
- Jato, M.V.; Iglesias, M.I.; Rodríguez-Gracia, V. A contribution to the environmental relationship of the pollen spectra of honeys from Ourense (NW Spain). Grana 1994, 33, 260–267. [Google Scholar] [CrossRef]
- Paredes, A.M.; Sosa, R.; Valdez, E.; Surkan, S. Evaluación diagnostica de mieles de distintas zonas apícolas de Misiones VI. Jorn. Científico Tecnológicas 2007, 317–320. Available online: www.alimentosargentinos.gob.ar (accessed on 1 November 2024).
Agroecosystem | Patch | ISH | No. of Species | Individuals | AIC | ISH | ABI | AABI |
---|---|---|---|---|---|---|---|---|
AF | 1 | 2.37 | 15 | 325 | 60.0784 | 2.99 ± 0.36 | 420.43 | 3.66 |
2 | 3.58 | 51 | 131 | 197.905 | ||||
3 | 3.01 | 35 | 199 | 119.995 | ||||
HF | 1 | 3.25 | 36 | 197 | 120.23 | 3.37 ± 0.05 | 490.9 | 4.27 |
2 | 3.63 | 45 | 194 | 151.60 | ||||
3 | 3.23 | 31 | 176 | 121.36 | ||||
D | 1 | 2.50 | 24 | 237 | 83.63 | 3.31 ± 0.50 | 315.56 | 2.75 |
2 | 3.77 | 56 | 234 | 179.66 | ||||
3 | 3.68 | 51 | 152 | 168.86 | ||||
S | 1 | 1.62 | 12 | 115 | 46.712 | 2.49 ± 0.56 | 184.26 | 1.6 |
2 | 2.89 | 22 | 82 | 72.28 | ||||
3 | 2.95 | 26 | 89 | 87.99 | ||||
NF | 1 | 3.59 | 45 | 144 | 149.17 | 3.61 ± 0.001 | 573.25 | 5 |
2 | 3.65 | 48 | 139 | 141.05 | ||||
3 | 3.67 | 46 | 171 | 136.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, R.; Niell, S.; Cesio, M.V.; Heinzen, H. A Conceptual Framework for the Apibotanical Evaluation of Different Landscapes. Ecologies 2025, 6, 3. https://doi.org/10.3390/ecologies6010003
Díaz R, Niell S, Cesio MV, Heinzen H. A Conceptual Framework for the Apibotanical Evaluation of Different Landscapes. Ecologies. 2025; 6(1):3. https://doi.org/10.3390/ecologies6010003
Chicago/Turabian StyleDíaz, Rosana, Silvina Niell, María Verónica Cesio, and Horacio Heinzen. 2025. "A Conceptual Framework for the Apibotanical Evaluation of Different Landscapes" Ecologies 6, no. 1: 3. https://doi.org/10.3390/ecologies6010003
APA StyleDíaz, R., Niell, S., Cesio, M. V., & Heinzen, H. (2025). A Conceptual Framework for the Apibotanical Evaluation of Different Landscapes. Ecologies, 6(1), 3. https://doi.org/10.3390/ecologies6010003