Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Turtle Dove Presence Data
2.3. Environmental Variables
2.4. Habitat Suitability Modeling
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar]
- Bakaloudis, D.E.; Thoma, C.T.; Makridou, K.N.; Kotsonas, E.G.; Arsenos, G.; Theodoridis, A.; Kontsiotis, V. Home Range and Habitat Selection of Feral Horses (Equus Ferus f. Caballus) in a Mountainous Environment: A Case Study from Northern Greece. Land 2024, 13, 1165. [Google Scholar] [CrossRef]
- Harms, T.M.; Murphy, K.T.; Lyu, X.; Patterson, S.S.; Kinkead, K.E.; Dinsmore, S.J.; Frese, P.W. Using Landscape Habitat Associations to Prioritize Areas of Conservation Action for Terrestrial Birds. PLoS ONE 2017, 12, e0173041. [Google Scholar]
- Walker, J.S. Geographical Patterns of Threat among Pigeons and Doves (Columbidae). Oryx 2007, 41, 289–299. [Google Scholar]
- Browne, S.J.; Aebischer, N.J.; Yfantis, G.; Marchant, J.H. Habitat Availability and Use by Turtle Doves Streptopelia Turtur between 1965 and 1995: An Analysis of Common Birds Census Data. Bird Study 2004, 51, 1–11. [Google Scholar]
- Brooks, T.M.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Rylands, A.B.; Konstant, W.R.; Flick, P.; Pilgrim, J.; Oldfield, S.; Magin, G. Habitat Loss and Extinction in the Hotspots of Biodiversity. Conserv. Biol. 2002, 16, 909–923. [Google Scholar]
- Clavero, M.; Brotons, L.; Pons, P.; Sol, D. Prominent Role of Invasive Species in Avian Biodiversity Loss. Biol. Conserv. 2009, 142, 2043–2049. [Google Scholar]
- Gurevitch, J.; Padilla, D.K. Are Invasive Species a Major Cause of Extinctions? Trends Ecol. Evol. 2004, 19, 470–474. [Google Scholar]
- Bakaloudis, D.E.; Thoma, C.T.; Makridou, K.N.; Kotsonas, E.G. Occupancy Dynamics of Free Ranging American Mink (Neogale Vison) in Greece. Sci. Rep. 2024, 14, 9973. [Google Scholar]
- Thaxter, C.B.; Joys, A.C.; Gregory, R.D.; Baillie, S.R.; Noble, D.G. Hypotheses to Explain Patterns of Population Change among Breeding Bird Species in England. Biol. Conserv. 2010, 143, 2006–2019. [Google Scholar]
- Mantyka-pringle, C.S.; Martin, T.G.; Rhodes, J.R. Interactions between Climate and Habitat Loss Effects on Biodiversity: A Systematic Review and Meta-analysis. Glob. Change Biol. 2012, 18, 1239–1252. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Regos, A.; Aquilué, N.; Retana, J.; De Cáceres, M.; Brotons, L. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests. PLoS ONE 2014, 9, e94906. [Google Scholar] [CrossRef]
- Sirami, C.; Brotons, L.; Burfield, I.; Fonderflick, J.; Martin, J.-L. Is Land Abandonment Having an Impact on Biodiversity? A Meta-Analytical Approach to Bird Distribution Changes in the North-Western Mediterranean. Biol. Conserv. 2008, 141, 450–459. [Google Scholar] [CrossRef]
- Newton, I. Population Limitation in Migrants. Ibis 2004, 146, 197–226. [Google Scholar] [CrossRef]
- Runge, C.A.; Martin, T.G.; Possingham, H.P.; Willis, S.G.; Fuller, R.A. Conserving Mobile Species. Front. Ecol. Environ. 2014, 12, 395–402. [Google Scholar] [CrossRef]
- Vickery, J.A.; Ewing, S.R.; Smith, K.W.; Pain, D.J.; Bairlein, F.; Škorpilová, J.; Gregory, R.D. The Decline of Afro-Palaearctic Migrants and an Assessment of Potential Causes. Ibis 2014, 156, 1–22. [Google Scholar] [CrossRef]
- Suárez-Seoane, S.; Osborne, P.E.; Baudry, J. Responses of Birds of Different Biogeographic Origins and Habitat Requirements to Agricultural Land Abandonment in Northern Spain. Biol. Conserv. 2002, 105, 333–344. [Google Scholar] [CrossRef]
- Pan-European Common Bird Monitoring Scheme (PECBMS). Available online: https://pecbms.info/trends-and-indicators/species-trends/ (accessed on 14 March 2025).
- BirdLife International. European Red List of Birds; Office for Official Publications of the European Communities: Luxembourg, 2021. [Google Scholar]
- BirdLife International. Streptopelia turtur. In The IUCN Red List of Threatened Species 2019; Office for Official Publications of the European Communities: Luxembourg, 2019; E.T22690419A154373407. [Google Scholar]
- Thoma, C.T.; Makridou, K.N.; Bakaloudis, D.E.; Vlachos, C.G. Age-Specific Differences in Wing Pointedness and Wing Length of European Turtle Doves Streptopelia turtur Migrating through the Eastern Flyway. Ringing Migr. 2020, 35, 94–100. [Google Scholar] [CrossRef]
- Cabodevilla, X.; Moreno-Zarate, L.; Arroyo, B. Differences in Wing Morphology between Juvenile and Adult European Turtle Doves Streptopelia turtur: Implications for Migration and Predator Escape. Ibis 2018, 160, 458–463. [Google Scholar] [CrossRef]
- Dunn, J.C.; Stockdale, J.E.; Moorhouse-Gann, R.J.; McCubbin, A.; Hipperson, H.; Morris, A.J.; Grice, P.V.; Symondson, W.O.C. The Decline of the Turtle Dove: Dietary Associations with Body Condition and Competition with Other Columbids Analysed Using High-throughput Sequencing. Mol. Ecol. 2018, 27, 3386–3407. [Google Scholar] [CrossRef] [PubMed]
- De Vries, E.H.J.; Foppen, R.P.B.; Van Der Jeugd, H.; Jongejans, E. Searching for the Causes of Decline in the Dutch Population of European Turtle Doves (Streptopelia turtur). Ibis 2022, 164, 552–573. [Google Scholar]
- Sauser, C.; Commagnac, L.; Eraud, C.; Guillemain, M.; Morin, S.; Powolny, T.; Villers, A.; Lormée, H. Habitats, Agricultural Practices, and Population Dynamics of a Threatened Species: The European Turtle Dove in France. Biol. Conserv. 2022, 274, 109730. [Google Scholar]
- Fisher, I.; Ashpole, J.; Scallan, D.; Proud, T.; Carboneras, C. International Single Species Action Plan for the Conservation of the European Turtle-Dove Streptopelia turtur (2018 to 2028); European Commission: Brussels, Belgium, 2018; pp. 81–83. [Google Scholar]
- Marx, M.; Reiner, G.; Willems, H.; Rocha, G.; Hillerich, K.; Masello, J.F.; Mayr, S.L.; Moussa, S.; Dunn, J.C.; Thomas, R.C. High Prevalence of Trichomonas gallinae in Wild Columbids across Western and Southern Europe. Parasit. Vectors 2017, 10, 242. [Google Scholar] [CrossRef]
- Stockdale, J.E.; Dunn, J.C.; Goodman, S.J.; Morris, A.J.; Sheehan, D.K.; Grice, P.V.; Hamer, K.C. The Protozoan Parasite Trichomonas gallinae Causes Adult and Nestling Mortality in a Declining Population of European Turtle Doves, Streptopelia turtur. Parasitology 2015, 142, 490–498. [Google Scholar]
- Lormée, H.; Barbraud, C.; Peach, W.; Carboneras, C.; Lebreton, J.D.; Moreno-Zarate, L.; Bacon, L.; Eraud, C. Assessing the Sustainability of Harvest of the European Turtle-Dove along the European Western Flyway. Bird. Conserv. Int. 2020, 30, 506–521. [Google Scholar]
- Marx, M.; Rocha, G.; Zehtindjiev, P. Using Stable Isotopes to Assess Population Connectivity in the Declining European Turtle Dove (Streptopelia Turtur). Conserv. Sci. Pract. 2020, 2, E152. [Google Scholar]
- Astaras, C.; Sideri-Manoka, Z.-A.; Vougioukalou, M.; Migli, D.; Vasiliadis, I.; Sidiropoulos, S.; Barboutis, C.; Manolopoulos, A.; Vafeiadis, M.; Kazantzidis, S. Acoustic Monitoring Confirms Significant Poaching Pressure of European Turtle Doves (Streptopelia turtur) during Spring Migration across the Ionian Islands, Greece. Animals 2023, 13, 687. [Google Scholar] [CrossRef]
- Thomaidis, C.; Papaspyropoulos, K.G.; Karabatzakis, T.; Logothetis, G.; Christophoridou, G. European Turtle Dove Population Trend in Greece Using Hunting Statistics of the Past 16-Year Period as Indices. Animals 2022, 12, 368. [Google Scholar] [CrossRef]
- Wretenberg, J.; Lindström, Å.; Svensson, S.; Thierfelder, T.; Pärt, T. Population Trends of Farmland Birds in Sweden and England: Similar Trends but Different Patterns of Agricultural Intensification. J. Appl. Ecol. 2006, 43, 1110–1120. [Google Scholar]
- Chamberlain, D.E.; Fuller, J.R.; Bunce, G.H.R.; Duckworth, J.C.; Shrubb, M. Changes in the Abundance of Farmland Birds in Relation to the Timing of Agricultural Intensification in England and Wales. J. Appl. Ecol. 2000, 37, 771–788. [Google Scholar]
- Busch, M.; Katzenberger, J.; Trautmann, S.; Gerlach, B.; Droeschmeister, R.; Sudfeldt, C. Drivers of Population Change in Common Farmland Birds in Germany. Bird. Conserv. Int. 2020, 30, 335–354. [Google Scholar]
- Tilman, D.; Fargione, J.; Wolff, B.; D’antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar]
- Geldmann, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of Terrestrial Protected Areas in Reducing Habitat Loss and Population Declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Camia, A. Forest Fire Damage in Natura 2000 Sites 2000–2012; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Newton, I. Relationship between Breeding and Wintering Ranges in Palaearctic-African Migrants. Ibis 1995, 137, 241–249. [Google Scholar]
- Dias, S.; Moreira, F.; Beja, P.; Carvalho, M.; Gordinho, L.; Reino, L.; Oliveira, V.; Rego, F. Landscape Effects on Large Scale Abundance Patterns of Turtle Doves Streptopelia turtur in Portugal. Eur. J. Wildl. Res. 2013, 59, 531–541. [Google Scholar]
- Bakaloudis, D.E.; Vlachos, C.G.; Chatzinikos, E.; Bontzorlos, V.; Papakosta, M. Breeding Habitat Preferences of the Turtledove (Streptopelia turtur) in the Dadia-Soufli National Park and Its Implications for Management. Eur. J. Wildl. Res. 2009, 55, 597–602. [Google Scholar]
- Moreno-Zarate, L.; Estrada, A.; Peach, W.; Arroyo, B. Spatial Heterogeneity in Population Change of the Globally Threatened European Turtle Dove in Spain: The Role of Environmental Favourability and Land Use. Divers. Distrib. 2020, 26, 818–831. [Google Scholar]
- Keller, V.; Herrando, S.; Voríšek, P.; Franch, M.; Kipson, M.; Milanesi, P.; Martí, D.; Anton, M.; Klvanová, A.; Kalyakin, M.V. European Breeding Bird Atlas 2: Distribution, Abundance and Change; Lynx Edicions: Barcelona, Spain, 2020; ISBN 8416728380. [Google Scholar]
- Korejs, K.; Riegert, J.; Mikuláš, I.; Vrba, J.; Havlíček, J. Habitat Preferences of European Turtle Dove Streptopelia turtur in the Czech Republic: Implications for Conservation of a Rapidly Declining Farmland Species. J. Vertebr. Biol. 2024, 73, 24001–24004. [Google Scholar] [CrossRef]
- Marx, M.; Quillfeldt, P. Species Distribution Models of European Turtle Doves in Germany Are More Reliable with Presence Only Rather than Presence Absence Data. Sci. Rep. 2018, 8, 16898. [Google Scholar]
- Hamza, F.; Kahli, A.; Chokri, M.-A.; Almalki, M.; Hanane, S. Urban and Industrial Landscapes Interact with Microhabitat to Predict Occurrence of European Turtle Dove (Streptopelia turtur) in Mediterranean Oases: Implications for Conservation. Landsc. Urban. Plan. 2021, 215, 104219. [Google Scholar] [CrossRef]
- Hanane, S. Multi-Scale Turtle Dove Nest Habitat Selection in a Mediterranean Agroforestry Landscape: Implications for the Conservation of a Vulnerable Species. Eur. J. Wildl. Res. 2018, 64, 45. [Google Scholar] [CrossRef]
- European Environmental Agency. CORINE Land Cover.2018 (Vector); Europe, 6-Yearly–Version 2020_20u1, May 2020; European Environmental Agency: Copenhagen, Denmark, 2019.
- De Frutos, Á.; Olea, P.P.; Vera, R. Analyzing and Modelling Spatial Distribution of Summering Lesser Kestrel: The Role of Spatial Autocorrelation. Ecol. Modell. 2007, 200, 33–44. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Morelli, F. Presence of Cuckoo Reliably Indicates High Bird Diversity: A Case Study in a Farmland Area. Ecol. Indic. 2015, 55, 52–58. [Google Scholar] [CrossRef]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A.; Mustoe, S. Bird Census Techniques, 2nd ed.; Academic Press: London, UK, 2000. [Google Scholar]
- Browne, S.J.; Aebischer, N.J. Temporal Changes in the Breeding Ecology of European Turtle Doves Streptopelia turtur in Britain, and Implications for Conservation. Ibis 2004, 146, 125–137. [Google Scholar] [CrossRef]
- Dunn, J.C.; Morris, A.J. Which Features of UK Farmland Are Important in Retaining Territories of the Rapidly Declining Turtle Dove Streptopelia turtur? Bird Study 2012, 59, 394–402. [Google Scholar] [CrossRef]
- European Environmental Agency. Impervious Built-Up 2018 (Raster 10 m); Europe, 3-Yearly, Aug. 2020; European Environmental Agency: Copenhagen, Denmark, 2020.
- European Environmental Agency. Tree Cover Density 2018 (Raster 10 m); Europe, 3-Yearly, Sep. 2020; European Environmental Agency: Copenhagen, Denmark, 2020.
- European Environmental Agency. European Digital Elevation Model (Raster 25 m); Apr. 2016; European Environmental Agency: Copenhagen, Denmark, 2016.
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Carboneras, C.; Moreno-Zarate, L.; Arroyo, B. The European Turtle Dove in the Ecotone between Woodland and Farmland: Multi-Scale Habitat Associations and Implications for the Design of Management Interventions. J. Ornithol. 2022, 163, 339–355. [Google Scholar] [CrossRef]
- De Buruaga, M.S.; Onrubia, A.; Fernández-García, J.M.; Campos, M.Á.; Canales, F.; Unamuno, J.M. Breeding Habitat Use and Conservation Status of the Turtle Dove Streptopelia turtur in Northern Spain. Ardeola 2013, 59, 291–300. [Google Scholar] [CrossRef]
- Velazco, S.J.E.; Galvao, F.; Villalobos, F.; De Marco Junior, P. Using Worldwide Edaphic Data to Model Plant Species Niches: An Assessment at a Continental Extent. PLoS ONE 2017, 12, e0186025. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar]
- Vignali, S.; Barras, A.G.; Arlettaz, R.; Braunisch, V. SDMtune: An R Package to Tune and Evaluate Species Distribution Models. Ecol. Evol. 2020, 10, 11488–11506. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Baldwin, R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar]
- Pearce, J.; Ferrier, S. Evaluating the Predictive Performance of Habitat Models Developed Using Logistic Regression. Ecol. Modell. 2000, 133, 225–245. [Google Scholar]
- Hanane, S.; Yassin, M. Nest-Niche Differentiation in Two Sympatric Columbid Species from a Mediterranean Tetraclinis Woodland: Considerations for Forest Management. Acta Oecologica 2017, 78, 47–52. [Google Scholar] [CrossRef]
- Browne, S.J.; Aebischer, N.J.; Crick, H.Q.P. Breeding Ecology of Turtle Doves Streptopelia turtur in Britain during the Period 1941–2000: An Analysis of BTO Nest Record Cards. Bird Study 2005, 52, 1–9. [Google Scholar]
- Browne, S.J.; Aebischer, N.J. Habitat Use, Foraging Ecology and Diet of Turtle Doves Streptopelia turtur in Britain. Ibis 2003, 145, 572–582. [Google Scholar]
- Hanane, S. Plasticity in Nest Placement of the Turtle Dove (Streptopelia turtur): Experimental Evidence from Moroccan Agro-Ecosystems. Avian Biol. Res. 2014, 7, 65–73. [Google Scholar]
- Hanane, S. Do Age and Type of Plantings Affect Turtle Dove Streptopelia turtur Nest Placement in Olive Agro-Ecosystems? Ethol. Ecol. Evol. 2012, 24, 284–293. [Google Scholar]
- Hanane, S.; Besnard, A. Are Nest-Detection Probability Methods Relevant for Estimating Turtle Dove Breeding Populations? A Case Study in Moroccan Agroecosystems. Eur. J. Wildl. Res. 2014, 60, 673–680. [Google Scholar]
- Browne, S.J.; Aebischer, N.J. Studies of West Palearctic Birds: Turtle Dove. Br. Birds 2005, 98, 58–72. [Google Scholar]
- Browne, S.J.; Aebischer, N.J. The Role of Agricultural Intensification in the Decline of the Turtle Dove Streptopelia turtur; English Nature: London, UK, 2001. [Google Scholar]
- Cabodevilla, X.; Wright, A.D.; Villanua, D.; Arroyo, B.; Zipkin, E.F. The Implementation of Irrigation Leads to Declines in Farmland Birds. Agric. Ecosyst. Environ. 2022, 323, 107701. [Google Scholar]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; De Snoo, G.R.; Eden, P. Ecological Impacts of Arable Intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar]
- Baldock, D.; Dwyer, J.; Sumpsi, J.; Varela-Ortega, C.; Caraveli, H.; Einschütz, S.; Petersen, J.E. The Environmental Impacts of Irrigation in the European Union; Institute for European Environmental Policy: London, UK, 2000; pp. 1–147. [Google Scholar]
- Cabodevilla, X.; Estrada, A.; Mougeot, F.; Jimenez, J.; Arroyo, B. Farmland Composition and Farming Practices Explain Spatio-Temporal Variations in Red-Legged Partridge Density in Central Spain. Sci. Total Environ. 2021, 799, 149406. [Google Scholar]
- Cabodevilla, X.; Arroyo, B.; Wright, A.D.; Salguero, A.J.; Mougeot, F. Vineyard Modernization Drives Changes in Bird and Mammal Occurrence in Vineyard Plots in Dry Farmland. Agric. Ecosyst. Environ. 2021, 315, 107448. [Google Scholar]
- Traba, J.; Morales, M.B. The Decline of Farmland Birds in Spain Is Strongly Associated to the Loss of Fallowland. Sci. Rep. 2019, 9, 9473. [Google Scholar]
- Vickery, J.A.; Bradbury, R.B.; Henderson, I.G.; Eaton, M.A.; Grice, P.V. The Role of Agri-Environment Schemes and Farm Management Practices in Reversing the Decline of Farmland Birds in England. Biol. Conserv. 2004, 119, 19–39. [Google Scholar]
- Young, R.E.; Dunn, J.C.; Vaughan, I.P.; Mallord, J.W.; Drake, L.E.; Orsman, C.J.; Ka, M.; Diallo, M.B.; Sarr, M.; Lormée, H. The Role of Cultivated versus Wild Seeds in the Diet of European Turtle Doves (Streptopelia turtur) across European Breeding and African Wintering Grounds. Environ. DNA 2024, 6, e539. [Google Scholar]
- Dias, S.; Fontoura, A.P. The Summer Diet of the Turtle-Dove (Streptopelia turtur) in Southern Portugal. Rev. Florest. 1996, 9, 227–241. [Google Scholar]
- Suárez, F. Farming in the Drylands of Spain: Birds of the Pseudosteppes. In Farming and birds in Europe; Academic Press: London, UK, 1997; pp. 297–330. [Google Scholar]
- Carricondo, A. Analysis of Environmental Correlates of Turtle Dove Streptopelia turtur Abundance in Spain Using Data from SACRE; SEO/BirdLife: Madrid, Spain, 2016. [Google Scholar]
- Berg, Å. Composition and Diversity of Bird Communities in Swedish Farmland–Forest Mosaic Landscapes. Bird Study 2002, 49, 153–165. [Google Scholar]
- Chiatante, G.; Porro, Z.; Meriggi, A. The Importance of Riparian Forests and Tree Plantations for the Occurrence of the European Turtle Dove Streptopelia turtur in an Intensively Cultivated Agroecosystem. Bird. Conserv. Int. 2021, 31, 605–619. [Google Scholar]
- Camprodon, J.; Brotons, L. Effects of Undergrowth Clearing on the Bird Communities of the Northwestern Mediterranean Coppice Holm Oak Forests. For. Ecol. Manag. 2006, 221, 72–82. [Google Scholar]
- Brown, G.S.; Pollock, L.; DeWitt, P.D.; Dawson, N. Responses of Terrestrial Animals to Forest Characteristics and Climate Reveals Ecological Indicators for Sustaining Wildlife in Managed Forests. For. Ecol. Manag. 2020, 459, 117854. [Google Scholar]
- Appleby, S.M.; Bebre, I.; Riebl, H.; Balkenhol, N.; Seidel, D. Linking Small Mammal Capture Probability with Understory Structural Complexity Using a Mobile Laser Scanning-derived Metric: A Case Study. Ecol. Res. 2024, 39, 360–367. [Google Scholar]
- Bakaloudis, D.E.; Vlachos, C.G.; Holloway, G.J. Habitat Use by Short-Toed Eagles Circaetus gallicus and Their Reptilian Prey during the Breeding Season in Dadia Forest (North-Eastern Greece). J. Appl. Ecol. 1998, 35, 821–828. [Google Scholar]
Acronym | Description | Units | Source |
---|---|---|---|
bio2 | Mean diurnal range (Mean of monthly (max temp-min temp)) | °C | [58] |
bio11 | Mean temperature of coldest quarter | °C | |
forl | Forest edge length (includes CLC classes 311, 312 and 313) | m | [49] |
hetagrip | Percent cover of heterogenous agricultural areas (includes CLC classes 242 and 243) | % | |
ibudis | Distance to impervious build up areas | m | [55] |
noniridis | Distance to non-irrigated land (includes CLC class 211) | m | [49] |
noniril | Non-irrigated land edge length | m | |
pasdis | Distance to pastures (includes CLC class 231) | m | |
pasp | Percent cover of pastures | % | |
peririp | Percent cover of permanently irrigated agricultural land (includes CLC class 212) | % | |
shrubl | Shrub edge length (includes CLC classes 321, 322, 323 and 324) | m | |
tcd | Tree cover density | % | [56] |
mcec | Mean cation exchange capacity (at ph7) | mmol(c)/kg | [59] |
mocd | Mean organic carbon density | Dg/kg | |
mph | Mean pH water | pH*10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoma, C.T.; Makridou, K.N.; Bakaloudis, D.E. Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece. Ecologies 2025, 6, 25. https://doi.org/10.3390/ecologies6020025
Thoma CT, Makridou KN, Bakaloudis DE. Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece. Ecologies. 2025; 6(2):25. https://doi.org/10.3390/ecologies6020025
Chicago/Turabian StyleThoma, Charalambos T., Konstantina N. Makridou, and Dimitrios E. Bakaloudis. 2025. "Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece" Ecologies 6, no. 2: 25. https://doi.org/10.3390/ecologies6020025
APA StyleThoma, C. T., Makridou, K. N., & Bakaloudis, D. E. (2025). Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece. Ecologies, 6(2), 25. https://doi.org/10.3390/ecologies6020025