Investigation of Microscale Periodic Ni-Mg-Ni-Mg Film Structures as Metal-Hydride Hydrogen Accumulators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bellosta von Colbe, J.; Ares, J.-R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Pistidda, C. Solid-State Hydrogen Storage for a Decarbonized Society. Hydrogen 2021, 2, 428–443. [Google Scholar] [CrossRef]
- Kumar, A.; Muthukumar, P.; Sharma, P.; Kumar, E.A. Absorption based solid state hydrogen storage system: A review. Sustain. Energy Technol. Assess. 2022, 52 Pt C, 102204. [Google Scholar] [CrossRef]
- Lin, H.-J.; Lu, Y.-S.; Zhang, L.-T.; Liu, H.-Z.; Edalati, K.; Révész, Á. Recent advances in metastable alloys for hydrogen storage: A review. Rare Met. 2022, 41, 1797–1817. [Google Scholar] [CrossRef]
- Modi, P.; Aguey-Zinsou, K.-F. Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review. Front. Energy Res. 2021, 9, 616115. [Google Scholar] [CrossRef]
- Corré, S.; Bououdina, M.; Kuriyama, N.; Fruchart, D.; Adachi, G.Y. Effects of mechanical grinding on the hydrogen storage and electrochemical properties of LaNi5. J. Alloys Compd. 1999, 292, 166–173. [Google Scholar] [CrossRef]
- Chandra, S.; Sharma, P.; Muthukumar, P.; Sarma V Tatiparti, S. Experimental hydrogen sorption study on a LaNi5-based 5 kg reactor with novel conical fins and water tubes and its numerical scale-up through a modular approach. Int. J. Hydrogen Energy 2022, in press. [Google Scholar] [CrossRef]
- Jain, J.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Pasquini, L.; Sakaki, K.; Akiba, E.; Allendorf, M.D.; Alvares, E.; Ares, J.-R.; Babai, D.; Baricco, M.; Bellosta von Colbe, J.; Bereznitsky, M.; et al. Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties. Prog. Energy 2022, 4, 032007. [Google Scholar] [CrossRef]
- Klyamkin, S.N. Metal-hydride magnesium-based compositions as materials for hydrogen accumulation. Ross. Chim. Zhurnal 2006, 50, 49–55. (In Russian) [Google Scholar]
- Shelyapina, M.G. Structure, Stability and Dynamics of Multi-Component Metal Hydrides According to the Data of the Theory of Density Functional and Nuclear Magnetic Resonance. Dr. Sci, SPbGU, Saint Petersburg, Russia, 2018; pp. 91–160. (In Russian). [Google Scholar]
- Shen, S.; Ouyang, L.; Liu, J.; Wang, H.; Yang, X.-S.; Zhu, M. In situ formed ultrafine metallic Ni from nickel (II) acetylacetonate precursor to realize an exceptional hydrogen storage performance of MgH2-Ni-EG nanocomposite. J. Magnes. Alloys 2022, in press. [Google Scholar]
- Jain, I.P.; Vijay, Y.K.; Malhotra, L.K.; Uppadhyay, K.S. Hydrogen storage in thin film metal hydride—A review. Int. J. Hydrogen Energy 1988, 13, 15–23. [Google Scholar] [CrossRef]
- Han, B.; Yu, S.; Wang, H.; Lu, Y.; Lin, H.-J. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Mater. 2022, 216, 114736. [Google Scholar] [CrossRef]
- Lider, A.; Kudiiarov, V.; Kashkarov, E.; Syrtanov, M.; Murashkina, T.; Lomygin, A.; Sakvin, I.; Karpov, D.; Ivanov, A. Hydrogen Accumulation and Distribution in Titanium Coatings at Gas-Phase Hydrogenation. Metals 2020, 10, 880. [Google Scholar] [CrossRef]
- Baldi, A.; Gonzalez-Silveira, M.; Palmisano, V.; Dam, B.; Griessen, R. Destabilization of the Mg-H system through elastic constraints. Phys. Rev. Lett. 2009, 102, 226102. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Akyildiz, H.; Öztürk, T. Thickness effects in hydrogen sorption of Mg/Pd thin films. J. Alloys Compd. 2013, 580 (Suppl. S1), S175–S178. [Google Scholar] [CrossRef]
- Abdul Majid, N.A.; Watanabe, J.; Notomi, M. Improved desorption temperature of magnesium hydride via multi-layering Mg/Fe thin film. Int. J. Hydrogen Energy 2021, 46, 4181–4187. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, L.; Yao, Z.; Yan, N.; Sun, Z.; Yang, X.; Zhu, X.; Hu, S.; Chen, L. Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. Int. J. Hydrogen Energy 2019, 44, 21955–21964. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Palacios-Lazcano, A.F.; Funatsu, T.; Cabañas-Moreno, J.G. Hydriding and dehydriding in air exposed Mg-Fe powder mixtures. Int. J. Hydrogen Energy 2016, 41, 23380–23387. [Google Scholar] [CrossRef]
- Stillesjö, F.; Ólafsson, S.; Hjörvarsson, B.; Karlsson, E. Hydride Formation in Mg/Ni-Sandwiches Studied by Hydrogen Profiling and Volumetric Measurements. Z. Phys. Chem. 1993, 181, 353–358. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, J.; Xie, R.; Song, Y. A first-principles study on interaction of Mg/Ni interface and its hydrogen absorption characteristics. Surf. Sci. 2016, 649, 133–137. [Google Scholar] [CrossRef]
- Ivanov, A.G.; Karpov, D.A.; Chebukov, E.S.; Yurchenkov, M.I. Research of hydrogen saturation of magnesium and magnesium-aluminum films and the influence of a protective nickel coating on it. J. Phys. Conf. Ser. 2021, 1954, 012014. [Google Scholar] [CrossRef]
- Catalog of Hydride-Forming Materials «Hydride Information Center (Hydpark) Search Result». Available online: https://www.hydrogen.energy.gov/ (accessed on 27 February 2020).
- Kuzubov, A.A.; Eliseeva, N.S.; Krasnov, P.O.; Kuklin, A.V.; Kovaleva, E.A.; Kholtobina, A.S. Theoretical study of hydrogen sorption and diffusion on the surface and in the volume of Mg2Ni intermetallide. Fiz. Tverd. Tela 2014, 56, 1970–1977. (In Russian) [Google Scholar]
- Li, L.; Akiyama, T.; Yagi, J.-I. Activity and capacity of hydrogen storage alloy Mg2NiH4 produced by hydriding combustion synthesis. J. Alloys Compd. 2001, 316, 118–123. [Google Scholar] [CrossRef]
- Karpov, D.A.; Litunovsky, V.N. Accumulator for Hydrogen Storage in Bound State and a Cartridge for Accumulator. Patent RU 2606301C2, 10 January 2017. [Google Scholar]
- Karpov, D. Film metal-hydride hydrogen accumulators: Potentials, production methods, prospects for application. In Proceedings of the International Conference on Innovative Applied Energy, Oxford, UK, 14–15 March 2019; p. 38. [Google Scholar]
Sample | Sputtering Method | Layer Thickness, µm | Q-ty of Layers | Ni Protection Layer | Mg/Ni ratio, at.% | ||
---|---|---|---|---|---|---|---|
Mg | Ni | Mg | Ni | ||||
Mg/Ni1 | Layer-by-layer | 1.4 | 0.25 | 5 | 6 | + | 96/4 |
Mg/Ni2 | Layer-by-layer | 1.8 | 0.34 | 5 | 6 | + | 92/8 |
Mg/Ni3 | Layer-by-layer | 1.3 | 0.35 | 5 | 6 | + | 88/12 |
wt.% | Mg/Ni1 | Mg/Ni2 | Mg/Ni3 |
---|---|---|---|
MgH2 | 80.3 | 76.3 | 61.7 |
Mg2NiH4 | 13.5 | 15.1 | 36.3 |
Sample | WH2 after Saturation, wt.% | WH2 after Desorption, wt.% | DWH2 of Reversibly Stored, wt.% | E(dH), kJ/mol | Temperature of Desorption Peaks, °C | |
---|---|---|---|---|---|---|
Mg/Ni1 | 7.5 | 4.9 | 2.6 | 46.7 | 236.7 | 292.9 |
Mg/Ni2 | 7.2 | 4.3 | 2.9 | 31.9 | 240 | 275 |
Mg/Ni3 | 7.0 | 3.6 | 3.4 | 19.8 | 240.2 | 260/290–300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.G.; Karpov, D.A.; Chebukov, E.S.; Yurchenkov, M.I. Investigation of Microscale Periodic Ni-Mg-Ni-Mg Film Structures as Metal-Hydride Hydrogen Accumulators. Hydrogen 2023, 4, 226-236. https://doi.org/10.3390/hydrogen4020016
Ivanov AG, Karpov DA, Chebukov ES, Yurchenkov MI. Investigation of Microscale Periodic Ni-Mg-Ni-Mg Film Structures as Metal-Hydride Hydrogen Accumulators. Hydrogen. 2023; 4(2):226-236. https://doi.org/10.3390/hydrogen4020016
Chicago/Turabian StyleIvanov, Alexander G., Dmitri A. Karpov, Evgeniy S. Chebukov, and Michael I. Yurchenkov. 2023. "Investigation of Microscale Periodic Ni-Mg-Ni-Mg Film Structures as Metal-Hydride Hydrogen Accumulators" Hydrogen 4, no. 2: 226-236. https://doi.org/10.3390/hydrogen4020016
APA StyleIvanov, A. G., Karpov, D. A., Chebukov, E. S., & Yurchenkov, M. I. (2023). Investigation of Microscale Periodic Ni-Mg-Ni-Mg Film Structures as Metal-Hydride Hydrogen Accumulators. Hydrogen, 4(2), 226-236. https://doi.org/10.3390/hydrogen4020016