-
Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor
-
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
-
Undoped CeP5O14-Polybenzimidazole Membranes for Fuel Cells at 200 °C
-
Numerical Simulations of Large-Amplitude Acoustic Oscillations in Cryogenic Hydrogen at Pipe Exit
-
Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant
Journal Description
Hydrogen
Hydrogen
is an international, peer-reviewed, open access journal on all aspects of hydrogen published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, Ei Compendex, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.6 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2025).
- Journal Rank: CiteScore - Q1 (Engineering (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Journal Cluster of Energy and Fuels: Energies, Batteries, Hydrogen, Biomass, Electricity, Wind, Fuels, Gases, Solar, ESA and Methane.
Impact Factor:
3.0 (2024);
5-Year Impact Factor:
3.5 (2024)
Latest Articles
Theoretical Thermal Management Concepts of Recovery Heat Waste in Solid Oxide Fuel Cell System
Hydrogen 2025, 6(4), 82; https://doi.org/10.3390/hydrogen6040082 (registering DOI) - 9 Oct 2025
Abstract
►
Show Figures
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can
[...] Read more.
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can be conducted through techniques to reduce the overall energy consumption. This approach aims to improve accuracy and efficiency by recovering and reusing the heat that would otherwise be lost. In this paper, thermal energy models are proposed based on waste heat recovery methodologies to utilize the heat from outlet fluids within the SOEC system. The mathematical methods for calculating thermal energy and energy transfer in SOEC systems have involved the principles of heat transfer. To address this, different simplified thermal models are developed in Simulink Matlab R2025b. The obtained results for estimating proper thermal energy for heating incoming fluids and recycled heat are discussed and compared to determine the efficient and potential thermal model for improvement the waste heat recovery.
Full article
Open AccessArticle
Hydrogen Pipelines Safety Using System Dynamics
by
Maryam Shourideh, Sirous Yasseri and Hamid Bahai
Hydrogen 2025, 6(4), 81; https://doi.org/10.3390/hydrogen6040081 - 7 Oct 2025
Abstract
►▼
Show Figures
With the global expansion of hydrogen infrastructure, the safe and efficient transportation of hydrogen is becoming more important. In this study, several technical factors, including material degradation, pressure variations, and monitoring effectiveness, that influence hydrogen transportation using pipelines are examined using system dynamics.
[...] Read more.
With the global expansion of hydrogen infrastructure, the safe and efficient transportation of hydrogen is becoming more important. In this study, several technical factors, including material degradation, pressure variations, and monitoring effectiveness, that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement, which is the result of microstructural trapping and limited diffusion in certain steels, can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover, pipeline monitoring inefficiency, combined with hydrogen’s high flammability and diffusivity, can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand, technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems, thereby supporting the transition to a low-carbon energy future.
Full article

Figure 1
Open AccessReview
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
by
Francesco Piraino, Leonardo Pagnotta, Orlando Corigliano, Matteo Genovese and Petronilla Fragiacomo
Hydrogen 2025, 6(4), 80; https://doi.org/10.3390/hydrogen6040080 - 3 Oct 2025
Abstract
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful
[...] Read more.
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful for improving mechanical strength and permeability, have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement, as well as exploring geometric optimization methodologies and manufacturing techniques, such as helical winding. Additionally, emerging technologies, such as integrated smart sensors for real-time monitoring of tank performance, are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations, with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications.
Full article
(This article belongs to the Special Issue Advances in Hydrogen Storage Materials: Integrating Theory, Computation and Experimental Insights)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis of Equipment Failures as a Contributor to Hydrogen Refuelling Stations Incidents
by
Rialivhuwa Nekhwevha, Daniel M. Madyira and Samuel L. Gqibani
Hydrogen 2025, 6(4), 79; https://doi.org/10.3390/hydrogen6040079 - 3 Oct 2025
Abstract
►▼
Show Figures
Hydrogen is a sustainable, clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen, a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However, hydrogen’s inherent properties
[...] Read more.
Hydrogen is a sustainable, clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen, a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However, hydrogen’s inherent properties present a significant safety challenge, and there have been several hydrogen incidents noted, with severe impacts to people and assets reported from operational hydrogen refuelling stations worldwide. This paper presents the outcome of an analysis of hydrogen incidents that occurred at hydrogen refuelling stations. For this purpose, the HIAD 2.1 and H2tool.org databases were used for the collection of hydrogen incidents. Forty-five incidents were reviewed and analysed to determine the frequent equipment failures in the hydrogen refuelling stations and the underlying causes. This study adopted a mixed research approach for the analysis of the incidents in the hydrogen refuelling stations. The analysis reveals that storage tank failures accounted for 40% of total reported incidents, hydrogen dispenser failures accounted for 33%, compressors accounted for 11%, valves accounted for 9%, and pipeline failures accounted for 7%. To enable the safe operation of hydrogen refuelling stations, hazards must be understood, effective barriers implemented, and learning from past incidents incorporated into safety protocols to prevent future incidents.
Full article

Figure 1
Open AccessArticle
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by
Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Abstract
►▼
Show Figures
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction
[...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions.
Full article

Figure 1
Open AccessArticle
Predicting the Structure of Hydrogenase in Microalgae: The Case of Nannochloropsis salina
by
Simone Botticelli, Cecilia Faraloni and Giovanni La Penna
Hydrogen 2025, 6(4), 77; https://doi.org/10.3390/hydrogen6040077 - 2 Oct 2025
Abstract
►▼
Show Figures
The production of green hydrogen by microalgae is a promising strategy to convert energy of sun light into a carbon-free fuel. Many problems must be solved before large-scale industrial applications. One solution is to find a microalgal species that is easy to grow,
[...] Read more.
The production of green hydrogen by microalgae is a promising strategy to convert energy of sun light into a carbon-free fuel. Many problems must be solved before large-scale industrial applications. One solution is to find a microalgal species that is easy to grow, easy to manipulate, and that can produce hydrogen open-air, thus in the presence of oxygen, for periods of time as long as possible. In this work we investigate by means of predictive computational models, the [FeFe] hydrogenase enzyme of Nannochloropsis salina, a promising microcalga already used to produce high-value products in salt water. Catalysis of water reduction to hydrogen by [FeFe] hydrogenase occurs in a peculiar iron-sulfur cluster (H-cluster) contained into a conserved H-domain, well represented by the known structure of the single-domain enzyme in Chlamydomonas reinhardtii (457 residues). By combining advanced deep-learning and molecular simulation methods we propose for N. salina a two-domain enzyme architecture hosting five iron-sulfur clusters. The enzyme organization is allowed by the protein size of 708 residues and by its sequence rich in cysteine and histidine residues mostly binding Fe atoms. The structure of an extended F-domain, containing four auxiliary iron-sulfur clusters and interacting with both the reductant ferredoxin and the H-domain, is thus predicted for the first time for microalgal [FeFe] hydrogenase. The structural study is the first step towards further studies of the microalga as a microorganism producing pure hydrogen gas.
Full article

Figure 1
Open AccessArticle
Assessing the Effect of Mineralogy and Reaction Pathways on Geological Hydrogen (H2) Generation in Ultramafic and Mafic (Basaltic) Rocks
by
Abubakar Isah, Hamidreza Samouei and Esuru Rita Okoroafor
Hydrogen 2025, 6(4), 76; https://doi.org/10.3390/hydrogen6040076 - 1 Oct 2025
Abstract
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock
[...] Read more.
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock interaction. Pre- and post-interactions, the solid phase was analyzed using X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS), while Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine the composition of the aqueous fluids. Results show that not all geologic H2-generating reactions involving ultramafic and mafic rocks result in the formation of serpentine, brucite, or magnetite. Our observations suggest that while mineral transformation is significant and may be the predominant mechanism, there is also the contribution of surface-mediated electron transfer and redox cycling processes. The outcome suggests continuous H2 production beyond mineral phase changes, indicating active reaction pathways. Particularly, in addition to transition metal sites, some ultramafic rock minerals may promote redox reactions, thereby facilitating ongoing H2 production beyond their direct hydration. Fluid–rock interactions also regenerate reactive surfaces, such as clinochlore, zeolite, and augite, enabling sustained H2 production, even without serpentine formation. Variation in reaction rates depends on mineralogy and reaction kinetics rather than being solely controlled by Fe oxidation states. These findings suggest that ultramafic and mafic rocks may serve as dynamic, self-sustaining systems for generating H2. The potential involvement of transition metal sites (e.g., Ni, Mo, Mn, Cr, Cu) within the rock matrix may accelerate H2 production, requiring further investigation. This perspective shifts the focus from serpentine formation as the primary driver of H2 production to a more complex mechanism where mineral surfaces play a significant role. Understanding these processes will be valuable for refining experimental approaches, improving kinetic models of H2 generation, and informing the site selection and design of engineered H2 generation systems in ultramafic and mafic formations.
Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
►▼
Show Figures

Figure 1
Open AccessArticle
Green Hydrogen Production with 25 kW Alkaline Electrolyzer Pilot Plant Shows Hydrogen Flow Rate Exponential Asymptotic Behavior with the Stack Current
by
Debajeet K. Bora
Hydrogen 2025, 6(4), 75; https://doi.org/10.3390/hydrogen6040075 - 25 Sep 2025
Abstract
Green H2 production using electrolyzer technology is an emerging method in the current mandate, using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However,
[...] Read more.
Green H2 production using electrolyzer technology is an emerging method in the current mandate, using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However, in this context, the characteristics of the working electrolyzer behave differently under system-level operation. In this paper, we investigated a 25 kW alkaline electrolyzer for its stack performance in terms of stack efficiency, the stack current vs. stack voltage, and the relationship between the H2 flow rate and stack current. It was found that the current of 52 A produces the best system efficiency of 64% under full load operation for 1 h. The H2 flow rate behaves in an exponential asymptotic pattern, and it is also found that the ramp-up time for hydrogen generation by the electrolyzer is significantly low, thus marking it as an efficient option for producing green hydrogen with the input of a hybrid grid and renewable PV-based power sources. Hydrogen production techno-economic analysis has been conducted, and the LCOH is found to be on the higher side for the current electrolyzer under investigation.
Full article
(This article belongs to the Topic Hydrogen—The New Energy Vector for the Transition of Industries "Hard to Abate")
►▼
Show Figures

Graphical abstract
Open AccessArticle
A Comparative Analysis of Waste-as-a-Feedstock Accounting Methods in Life Cycle Assessments
by
Tyler W. Davis, Roksana Mahmud, Shannon McNaul, Matthew Jamieson and Eric Lewis
Hydrogen 2025, 6(4), 74; https://doi.org/10.3390/hydrogen6040074 - 24 Sep 2025
Abstract
►▼
Show Figures
Global waste generation is a ubiquitous challenge, driving a paradigm shift towards viewing waste as a valuable resource for a circular economy across diverse sectors. While innovative waste-to-resource pathways are crucial, rigorous Life Cycle Assessment (LCA) is essential to ensure the pathways are
[...] Read more.
Global waste generation is a ubiquitous challenge, driving a paradigm shift towards viewing waste as a valuable resource for a circular economy across diverse sectors. While innovative waste-to-resource pathways are crucial, rigorous Life Cycle Assessment (LCA) is essential to ensure the pathways are an important part of current practices. However, LCA application to waste valorization varies, leading to incomparable results due to differing methodological choices. This paper examines three key nuances in waste-as-resource LCAs: the zero-burden assumption, the biogenic carbon neutrality assumption, and the benchmark assumption for emissions avoidance. Using a waste gasification to hydrogen case study, we demonstrate how these methodological decisions impact LCA outcomes. Our findings reveal that waste composition significantly influences the results and highlight challenges associated with biogenic carbon accounting under various system boundary assumptions. Emissions avoidance accounting requires multi-functional unit perspectives and robust benchmark selection. This paper clarifies these accounting approaches, empirically illustrates their influence, and discusses broad implications for accurate sustainability assessment, emphasizing the critical role of transparent LCA choices for effective policy and investment in circular economy solutions.
Full article

Figure 1
Open AccessArticle
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
by
Shanza Neda Hussain and Aritra Ghosh
Hydrogen 2025, 6(3), 73; https://doi.org/10.3390/hydrogen6030073 - 22 Sep 2025
Abstract
►▼
Show Figures
The escalating global demand for electricity, coupled with environmental concerns and economic considerations, has driven the exploration of alternative energy sources, creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen
[...] Read more.
The escalating global demand for electricity, coupled with environmental concerns and economic considerations, has driven the exploration of alternative energy sources, creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen climate zones along with techno-economic analysis involves evaluating technical efficiency and economic viability. Technical parameters are assessed using PVsyst simulation and HOMER Pro. While, economic analysis considers return on investment, net present value, internal rate of return, and payback period. Results indicate that temperate and dry zones exhibit significant electricity generation potential from an FPV. The study outlines the payback period with the lowest being 5.7 years, emphasizing the system’s environmental benefits by reducing water loss in the form of evaporation. The system is further integrated with hydrogen generation while estimating the number of cars that can be refueled at each location, with the highest amount of hydrogen production being 292,817 kg/year, refueling more than 100 cars per day. This leads to an LCOH of GBP 2.84/kg for 20 years. Additionally, the comparison across different Koppen climate zones suggests that, even with the high soiling losses, dry climate has substantial potential; producing up to 18,829,587 kWh/year of electricity and 292,817 kg/year of hydrogen. However, factors such as high inflation can reduce the return on investment to as low as 13.8%. The integration of FPV with hydropower plants is suggested for enhanced power generation, reaffirming its potential to contribute to a sustainable energy future while addressing the UN’s SDG7, SDG9, SDG13, and SDG15.
Full article

Figure 1
Open AccessReview
Unified Case Study Analysis of Techno-Economic Tools to Study the Viability of Off-Grid Hydrogen Production Plants
by
Leonardo Fernandes, Francisco Machado, Lucas Marcon and André Fonseca
Hydrogen 2025, 6(3), 72; https://doi.org/10.3390/hydrogen6030072 - 18 Sep 2025
Abstract
►▼
Show Figures
The increasing interest in off-grid green hydrogen production has elevated the importance of reliable techno-economic assessment (TEA) tools to support investment and planning decisions. However, limited operational data and inconsistent modeling approaches across existing tools introduce significant uncertainty in cost estimations. This study
[...] Read more.
The increasing interest in off-grid green hydrogen production has elevated the importance of reliable techno-economic assessment (TEA) tools to support investment and planning decisions. However, limited operational data and inconsistent modeling approaches across existing tools introduce significant uncertainty in cost estimations. This study presents a comprehensive review and comparative analysis of seven TEA tools—ranging from simplified calculators to advanced hourly based simulation platforms—used to estimate the Levelized Cost of Hydrogen (LCOH) in off-grid Hydrogen Production Plants (HPPs). A standardized simulation framework was developed to input consistent technical, economic, and financial parameters across all tools, allowing for a horizontal comparison. Results revealed a substantial spread in LCOH values, from EUR 5.86/kg to EUR 8.71/kg, representing a 49% variation. This discrepancy is attributed to differences in modeling depth, treatment of critical parameters (e.g., electrolyzer efficiency, capacity factor, storage, and inflation), and the tools’ temporal resolution. Tools that included higher input granularity, hourly data, and broader system components tended to produce more conservative (higher) LCOH values, highlighting the cost impact of increased modeling realism. Additionally, the total project cost—more than hydrogen output—was identified as the key driver of LCOH variability across tools. This study provides the first multi-tool horizontal testing protocol, a methodological benchmark for evaluating TEA tools and underscores the need for harmonized input structures and transparent modeling assumptions. These findings support the development of more consistent and reliable economic evaluations for off-grid green hydrogen projects, especially as the sector moves toward commercial scale-up and policy integration.
Full article

Figure 1
Open AccessArticle
Investigation of Erosion Behavior and Life Prediction of Stainless Steel Tube Under Hydrogen Gas with High Velocity
by
Tao Zhang, Xingxing Li, Fuxia Peng, Wei Xiao and Zhiji Song
Hydrogen 2025, 6(3), 71; https://doi.org/10.3390/hydrogen6030071 - 16 Sep 2025
Abstract
►▼
Show Figures
The erosion behavior and the service life of a hydrogen transmission tube with high velocity suitable for a hydrogen fuel aviation engine are not clear, which is the bottleneck for its application. In this study, a coupled model considering the fluid flow field
[...] Read more.
The erosion behavior and the service life of a hydrogen transmission tube with high velocity suitable for a hydrogen fuel aviation engine are not clear, which is the bottleneck for its application. In this study, a coupled model considering the fluid flow field of hydrogen and discrete motion of particles was established. The effects of the geometry parameters and erosion parameters on the hydrogen erosion behavior were investigated. The maximum erosion rate increased exponentially with the increased hydrogen velocity and increased linearly with the increased erosion time. The large bend radius and inner diameter of the bend tube contributed to the decreased erosion rate. There was an optimized window of the bend angle for a small erosion rate. The relationship between the accumulated thickness loss and maximum erosion rate was established. The prediction model of the service life was established using fourth strength theory. The service life of the tube was sensitive to the hydrogen velocity and erosion time. The experiments were conducted and the variations in thickness and hardness were measured. The simulated models agreed with the experiments and could provide guidance for the parameter selection and prediction of the service life of a bend tube.
Full article

Figure 1
Open AccessArticle
Undoped Polybenzimidazole Membranes Composited with CeP5O14 for Use in Hydrogen Fuel Cells at 200 °C
by
Oksana Zholobko, Abdul Salam, Muhammad Muzamal. Ashfaq, Xiaoning Qi and Xiang-Fa Wu
Hydrogen 2025, 6(3), 70; https://doi.org/10.3390/hydrogen6030070 - 16 Sep 2025
Abstract
►▼
Show Figures
Intermediate-temperature (IT) proton-exchange membranes (PEMs) play vital roles in hydrogen and direct liquid fuel cells, electrolyzers, and other electrochemical membrane reactors at elevated temperatures of higher than 150 °C. This article reports the fabrication and performance assessment of a type of new IT
[...] Read more.
Intermediate-temperature (IT) proton-exchange membranes (PEMs) play vital roles in hydrogen and direct liquid fuel cells, electrolyzers, and other electrochemical membrane reactors at elevated temperatures of higher than 150 °C. This article reports the fabrication and performance assessment of a type of new IT polymer–inorganic composite (PIC) PEMs that were made of cerium ultraphosphate (CeP5O14-CUP) as the durable solid-state proton conductor and undoped polybenzimidazole (PBI) as the high-temperature (HT) polymeric binder. The proton conductivity and electrochemical performance of the PIC PEMs were characterized at 200 °C with varying membrane thickness, processing parameters, and operating conditions using a single-stack hydrogen fuel cell connected to a fuel cell test station. Experimental results show that the PIC membranes (with CUP of 75 wt.%) carried high mechanical flexibility and strength as well as noticeably reduced water uptake of 4.4 wt.% compared to pristine PBI membranes of 14.0 wt.%. Single-stack hydrogen fuel cell tests at 200 °C in a humidified hydrogen and air environment showed that the proton conductivity of the PIC PEMs was measured up to 0.105 S/cm, and the electrochemical performance exhibited its dependence upon the membrane thickness with the power density of up to 191.7 mW/cm2. Discussions are made to explore performance dependence and improvement strategies. The present study expects the promising future of the IT-PIC-PEMs for broad applications in high-efficiency electrochemical energy conversion and value-added chemical production at elevated temperatures of 200 °C or higher.
Full article

Figure 1
Open AccessArticle
Investigation of Mechano-Electrochemical Effects on Hydrogen Distribution at Corrosion Defects
by
Zhixiang Dai, Jiamin Tang, Sijia Zheng, Feng Wang, Qin Bie, Pengcheng Kang, Xinyi Wang, Shiwen Guo and Lin Chen
Hydrogen 2025, 6(3), 69; https://doi.org/10.3390/hydrogen6030069 - 12 Sep 2025
Abstract
This study employed tensile test, hydrogen permeation measurements, and potentiodynamic polarization testing to investigate the mechanical properties, hydrogen diffusion coefficients, and electrochemical behavior of X80 steel. A multifield coupled finite element (FE) model was developed that incorporated the mechano-electrochemical (M-E) effect to analyze
[...] Read more.
This study employed tensile test, hydrogen permeation measurements, and potentiodynamic polarization testing to investigate the mechanical properties, hydrogen diffusion coefficients, and electrochemical behavior of X80 steel. A multifield coupled finite element (FE) model was developed that incorporated the mechano-electrochemical (M-E) effect to analyze the stress–strain distribution, anodic equilibrium potential, cathodic exchange current density, and hydrogen distribution characteristics at pipeline corrosion defects under varying tensile strains. The results indicated that tensile strain significantly modulated the anodic equilibrium potential and cathodic exchange current density, leading to localized hydrogen accumulation at corrosion defects. The stress concentration and plastic deformation at the defect site intensified as the tensile strain increased, further promoting hydrogen enrichment. The study concluded that the M-E effect exacerbated hydrogen enrichment at the defect sites, increasing the risk of hydrogen-induced cracking. The simulation results showed that the hydrogen distribution state aligned with the stress–hydrogen diffusion coupling model when considering the M-E effect. However, the M-E effect slightly increased the hydrogen concentration at the defect. These findings provide critical insights for enhancing the safety and durability of hydrogen transmission pipelines.
Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
►▼
Show Figures

Figure 1
Open AccessArticle
A Life Cycle Assessment Framework for Evaluating the Climate Impact of Hydrogen-Based Passenger Vehicle Technologies Toward Sustainable Mobility
by
Péter Németh, Botond Mecséri and Barna Hanula
Hydrogen 2025, 6(3), 68; https://doi.org/10.3390/hydrogen6030068 - 10 Sep 2025
Abstract
►▼
Show Figures
Hydrogen-based mobility solutions could offer viable technology for sustainable transportation. Current research often examines single pathways, leaving broader comparisons unexplored. This comparative life cycle assessment (LCA) evaluates which vehicle type achieves the best environmental performance when using hydrogen from grey, blue, and green
[...] Read more.
Hydrogen-based mobility solutions could offer viable technology for sustainable transportation. Current research often examines single pathways, leaving broader comparisons unexplored. This comparative life cycle assessment (LCA) evaluates which vehicle type achieves the best environmental performance when using hydrogen from grey, blue, and green production pathways, the three dominant carbon-intensity variants currently deployed. This study examines seven distinct vehicle configurations that rely on hydrogen-derived energy sources across various propulsion systems: a hydrogen fuel cell electric vehicle (H2FCEV), hydrogen internal combustion engine vehicle (H2ICEV), methanol flexible fuel vehicle (MeOH FFV), ethanol flexible vehicle (EtOH FFV), Fischer-Tropsch (FT) diesel internal combustion vehicle (FTD ICEV) and renewable compressed natural gas vehicle (RNGV). Via both grey and blue hydrogen production, H2 FCEVs are the best options from the viewpoint of GWP, but surprisingly, in the green category, FT-fueled vehicles take over both first and second place, as they produce nearly half the lifetime carbon emissions of purely hydrogen-fueled vehicles. RNGV also emerges as a promising alternative, offering optimal engine properties in a system similar to H2ICEVs, enabling parallel development and technological upgrades. These findings not only highlight viable low-carbon pathways but also provide clear guidance for future targeted, detailed, applied research.
Full article

Figure 1
Open AccessArticle
Microstructures as Models for Origin of Life in Hot Water: Hydrogen-Assisted Self-Assembly of Glycine and Alanine Zwitterions
by
Ignat Ignatov
Hydrogen 2025, 6(3), 67; https://doi.org/10.3390/hydrogen6030067 - 9 Sep 2025
Abstract
Building on the early investigation by Sidney W. Fox that dry-heated amino acids can spontaneously form microspheres, this research studies the self-organization of glycine and alanine with hydrogen in a liquid system. This study aimed to investigate the spontaneous formation of membraneless, microscale
[...] Read more.
Building on the early investigation by Sidney W. Fox that dry-heated amino acids can spontaneously form microspheres, this research studies the self-organization of glycine and alanine with hydrogen in a liquid system. This study aimed to investigate the spontaneous formation of membraneless, microscale amino acid assemblies under simulated prebiotic hydrothermal conditions, such as hot mineral sources and ponds. Aqueous solutions of glycine and alanine were prepared in a hydrogen-rich mineral buffer and thermally incubated at 75 °C. Phase-contrast microscopy, transmission electron microscopy (TEM), and molecular modeling were employed to analyze the morphology and internal organization of the resulting structures. Microscopy revealed that zwitterionic glycine and alanine spontaneously self-organize into spherical microspheres (~12 µm), in which the charged –NH3+ and –COO− groups orient outward, while the hydrophobic methyl groups of alanine point inward, forming a stabilized internal core. The primary studies were performed with hot mineral water from Rupite, Bulgaria, at 73.4 °C. The resulting osmotic pressure difference Δπ ≈ 2490 Pa, derived from the van’t Hoff equalization. This suggests a chemically asymmetric system capable of sustaining directional water flux and passive molecular enrichment. The zwitterionic nature of glycine and alanine, which possesses both –NH3+ and –COO− groups, supports the formation of microspheres in our experiments. Under conditions with hot mineral water and hydrogen acting as a reducing agent in the primordial atmosphere, these amino acids self-organized into dense interfacial microspheres. These findings support the idea that thermally driven, zwitterion-mediated aggregation of simple amino acids, such as glycine and alanine, with added hydrogen, could generate membraneless, selectively organized microenvironments on the early Earth. Such microspheres may represent a plausible intermediate between dispersed organisms and microspheres.
Full article
(This article belongs to the Special Issue Reactions of Hydrogen with Inorganic and Organic Molecules in Aqueous Media)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor
by
Conor McIvor, Sumit Roy, Neal Morgan, Bill Maxwell and Andrew Smallbone
Hydrogen 2025, 6(3), 66; https://doi.org/10.3390/hydrogen6030066 - 5 Sep 2025
Cited by 1
Abstract
►▼
Show Figures
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis, utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen
[...] Read more.
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis, utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen and solid carbon outputs. Operating at 20 bar and 1100 °C, the reactor employs a molten nickel-bismuth alloy as both catalyst and heat transfer medium, alongside a sodium bromide layer to enhance carbon purity and facilitate separation. Four operational scenarios were modelled, comparing various heating and recycling configurations to optimise hydrogen yield and process economics. Results indicate that the levelised cost of hydrogen (LCOH) is highly sensitive to methane and electricity prices, CO2 taxation, and the value of carbon by-products. Two reactor configurations demonstrate competitive LCOHs of 1.29 $/kgH2 and 1.53 $/kgH2, highlighting methane pyrolysis as a viable low-carbon alternative to steam methane reforming (SMR) with carbon capture and storage (CCS). This analysis underscores the potential of methane pyrolysis for scalable, economically viable hydrogen production under specificmarket conditions.
Full article

Figure 1
Open AccessReview
Fuel-Cell Thermal Management Strategies for Enhanced Performance: Review of Fuel-Cell Thermal Management in Proton-Exchange Membrane Fuel Cells (PEMFCs) and Solid-Oxide Fuel Cells (SOFCs)
by
Ibham Veza
Hydrogen 2025, 6(3), 65; https://doi.org/10.3390/hydrogen6030065 - 4 Sep 2025
Abstract
Effective thermal management is crucial for optimizing the performance, efficiency, and durability of fuel-cell technologies, including proton-exchange membrane fuel cells (PEMFCs) and solid-oxide fuel cells (SOFCs). The operation of fuel cells involves complex heat generation mechanisms, primarily driven by electrochemical reactions, which can
[...] Read more.
Effective thermal management is crucial for optimizing the performance, efficiency, and durability of fuel-cell technologies, including proton-exchange membrane fuel cells (PEMFCs) and solid-oxide fuel cells (SOFCs). The operation of fuel cells involves complex heat generation mechanisms, primarily driven by electrochemical reactions, which can lead to significant energy loss as heat. This review examines the specific heat generation sources and challenges associated with different fuel-cell types, highlighting the critical importance of effective thermal management strategies. Key techniques for thermal regulation, including active and passive cooling systems, are examined in detail. Active cooling methods like liquid cooling and air cooling are effective in dissipating excess heat, while passive methods leverage advanced materials and optimized designs to enhance natural heat dissipation. Furthermore, innovative heat recovery systems are explored, demonstrating their potential to enhance overall energy efficiency by capturing and repurposing waste heat. The integration of machine learning techniques has arisen as a promising avenue for advancing temperature control in fuel cells. Reinforcement learning, deep learning algorithms, and support vector machines, along with artificial neural networks, are discussed in the context of their application in managing temperature dynamics and optimizing thermal performance. The review also emphasizes the significance of real-time monitoring, as well as adaptive control strategies to respond effectively to the dynamic operating conditions of fuel cells. Understanding and applying these thermal management strategies is essential for the successful commercialization of fuel cells across various sectors, ranging from automotive to stationary power generation. With the growing demand for clean energy solutions, progress in thermal management techniques will be crucial in improving the dependability and practicality of fuel-cell systems.
Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
►▼
Show Figures

Figure 1
Open AccessArticle
Dry-Oxidative Reforming of Biogas for Hydrogen Generation over Ca and Mg-Promoted Titania-Supported Nickel Catalyst
by
Himanshu Sharma, Pradeep Kumar Yadav, Sudhanshu Sharma and Amit Dhir
Hydrogen 2025, 6(3), 64; https://doi.org/10.3390/hydrogen6030064 - 2 Sep 2025
Abstract
►▼
Show Figures
Hydrogen is gaining significant interest from researchers because of its renewable and clean nature. In this study, we explored the effects of promoters and oxygen addition on biogas reforming. The promotion of catalysts with alkaline earth metals (Ca and Mg) improved the basicity
[...] Read more.
Hydrogen is gaining significant interest from researchers because of its renewable and clean nature. In this study, we explored the effects of promoters and oxygen addition on biogas reforming. The promotion of catalysts with alkaline earth metals (Ca and Mg) improved the basicity of the catalyst, leading to enhanced catalytic activity and stability. The promotion of the Ni/TiO2 catalyst with Ca showed higher CH4 conversion and H2 yield compared to the bare and Mg-Ni/TiO2 catalysts. The enhanced activity of Ca-Ni/TiO2 could be attributed to its high dispersion, small particulate size, and strong metal–support interaction. Adding oxygen to the reactor feed improved the activity and stability of the catalyst due to the simultaneous occurrence of dry and partial oxidative reforming. The maximum CH4 conversion and H2 yield of 81.13 and 37.5% were obtained at 800 °C under dry reforming conditions, which increased to 96 and 57.6% under dry-oxidative reforming (O2/CH4 = 0.5). The CHNS analysis of the spent Ca-Ni/TiO2 catalyst also showed carbon deposition of only 0.58% after 24 h of continuous dry-oxidative reforming compared to 25.16% under continuous dry reforming reaction. XRD analysis of the spent catalyst also confirmed the formation of carbon deposits under dry reforming. Adding oxygen to the feed resulted in the simultaneous removal of carbon species formed over the catalytic surface through gasification. These findings demonstrate that Ca promotion combined with oxygen addition significantly improves the catalyst efficiency and durability, offering a promising pathway for stable, long-term hydrogen generation. The results highlight the potential of Ca–Ni/TiO2 catalysts for integration into biogas reforming units at an industrial scale, supporting renewable hydrogen production and carbon mitigation in future energy systems.
Full article

Figure 1
Open AccessArticle
Numerical Simulations of Large-Amplitude Acoustic Oscillations in Cryogenic Hydrogen at Pipe Exit
by
Kian Conroy and Konstantin I. Matveev
Hydrogen 2025, 6(3), 63; https://doi.org/10.3390/hydrogen6030063 - 29 Aug 2025
Abstract
►▼
Show Figures
Pipe exits into cryogenic systems, such as an exit of a venting or sensor tube inside a cryogenic storage tank, can affect spontaneously occurring acoustic oscillations, known as Taconis oscillations. The amplitude which such oscillations will reach is dependent on losses at the
[...] Read more.
Pipe exits into cryogenic systems, such as an exit of a venting or sensor tube inside a cryogenic storage tank, can affect spontaneously occurring acoustic oscillations, known as Taconis oscillations. The amplitude which such oscillations will reach is dependent on losses at the pipe exit that prevent resonant oscillations from growing without bound. Consequently, being able to accurately determine minor losses at a pipe exit is important in predicting the behavior of these oscillations. Current thermoacoustic modeling of such transitions typically relies on steady-flow minor loss coefficients, which are usually assumed to be constant for a pipe entrance or exit. In this study, numerical simulations are performed for acoustic flow at a pipe exit, with and without a wall adjacent to the exit. The operating fluid is cryogenic hydrogen gas, while the pipe radius (2 and 4 mm), temperature (40 and 80 K), and acoustic velocity amplitudes (varying in the range of 10 m/s to 70 m/s) are variable parameters. The simulation results are compared with one-dimensional acoustic models to determine the behavior of minor losses. Results are also analyzed to find harmonics behavior and a build-up of mean pressure differences. Minor losses decrease to an asymptotic value with increasing Reynolds number, while higher temperatures also reduce minor losses (10% reduction at 80 K versus 40 K). A baffle sharply increases minor losses as the distance to pipe exit decreases. These findings can be used to improve the accuracy of oscillation predictions by reduced-order thermoacoustic models.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Energies, Materials, Catalysts, Metals, Hydrogen
Hydrogen—The New Energy Vector for the Transition of Industries "Hard to Abate"
Topic Editors: Pasquale Cavaliere, Geoffrey BrooksDeadline: 20 October 2025
Topic in
Catalysts, Energies, Fuels, Hydrogen, Nanoenergy Advances
Hydrogen Energy Technologies, 3rd Edition
Topic Editors: Bahman Shabani, Mahesh SuryawanshiDeadline: 1 November 2026
Topic in
Catalysts, Energies, Hydrogen, Processes, Sustainability
Advances in Hydrogen Energy
Topic Editors: Samuel Simon Araya, Vincenzo LisoDeadline: 31 March 2027

Special Issues
Special Issue in
Hydrogen
Advances in Hydrogen Production, Storage, and Utilization
Guest Editor: Guo-Ming WengDeadline: 31 December 2025
Special Issue in
Hydrogen
The Hydrogen Horizon: Advancing End-Use Applications and Ensuring Safety in a Thriving Hydrogen Economy
Guest Editor: Isabel CabritaDeadline: 31 January 2026
Special Issue in
Hydrogen
Advances in Solid-State Hydrogen and Energy Storage
Guest Editor: Thi Thu LeDeadline: 31 March 2026
Special Issue in
Hydrogen
Atomic and Molecular Clusters for Hydrogen Storage
Guest Editor: Jonathan LyonDeadline: 30 April 2026