Neighbourhood Socio-Economic Circumstances, Place of Residence and Obesity amongst Australian Adults: A Longitudinal Regression Analysis Using 14 Annual Waves of the HILDA Cohort
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Sample Size
2.3. Outcome Measurement
2.4. Exposure Variables
2.5. Explanatory Variables
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
OR | Odds Ratio |
CI | Confidence Interval |
HILDA | Household, Income and Labour Dynamics in Australia |
SEIFA | Socio-Economic Indexes for Areas |
References
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- World Health Organization Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 18 April 2021).
- OECD Obesity Update 2017. OECD Updat. Rep. 2017, 13, 331–341.
- Cameron, A.J.; Welborn, T.A.; Zimmet, P.Z. Overweight and obesity in Australia: The 1999–2000 Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Med. J. Aust. 2004, 180, 418. [Google Scholar] [CrossRef] [PubMed]
- Keramat, S.A.; Alam, K.; Al-Hanawi, M.K.; Gow, J.; Biddle, S.J.H.; Hashmi, R. Trends in the prevalence of adult overweight and obesity in Australia, and its association with geographic remoteness. Sci. Rep. 2021, 11, 11320. [Google Scholar] [CrossRef]
- Walls, H.L.; Magliano, D.J.; Stevenson, C.E.; Backholer, K.; Mannan, H.R.; Shaw, J.E.; Peeters, A. Projected progression of the prevalence of obesity in Australia. Obesity 2012, 20, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Keramat, S.A.; Alam, K.; Rana, R.H.; Chowdhury, R.; Farjana, F.; Hashmi, R.; Gow, J.; Biddle, S.J.H. Obesity and the risk of developing chronic diseases in middle-aged and older adults: Findings from an Australian longitudinal population survey, 2009–2017. PLoS ONE 2021, 16, e0260158. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Sathi, N.J.; Gow, J.; Biddle, S.J.H.; Al-Hanawi, M.K. Self-reported disability and its association with obesity and physical activity in Australian adults: Results from a longitudinal study. SSM-Popul. Health 2021, 14, 100765. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Ahinkorah, B.O.; Islam, M.S.; Islam, M.I.; Hossain, M.Z.; Ahmed, S.; Gow, J.; Biddle, S.J. Obesity, Disability and Self-Perceived Health Outcomes in Australian Adults: A Longitudinal Analysis Using 14 Annual Waves of the HILDA Cohort. Clin. Outcomes Res. 2021, 13, 777–788. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Rana, R.H.; Shuvo, S.D.; Gow, J.; Biddle, S.J.H.; Keating, B. Age and gender differences in the relationship between obesity and disability with self-perceived employment discrimination: Results from a retrospective study of an Australian national sample. SSM-Popul. Health 2021, 16, 100923. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Gow, J.; Biddle, S.J.H. Obesity, Long-Term Health Problems, and Workplace Satisfaction: A Longitudinal Study of Australian Workers. J. Community Health 2020, 45, 288–300. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Gow, J.; Biddle, S.J.H. Gender differences in the longitudinal association between obesity, and disability with workplace absenteeism in the Australian working population. PLoS ONE 2020, 15, e0233512. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Gow, J.; Biddle, S.J.H. A longitudinal exploration of the relationship between obesity, and long term health condition with presenteeism in Australian workplaces, 2006–2018. PLoS ONE 2020, 15, e0238260. [Google Scholar] [CrossRef] [PubMed]
- Mayosi, B.M.; Flisher, A.J.; Lalloo, U.G.; Sitas, F.; Tollman, S.M.; Bradshaw, D. The burden of non-communicable diseases in South Africa. Lancet 2009, 374, 934–947. [Google Scholar] [CrossRef]
- Goettler, A.; Grosse, A.; Sonntag, D. Productivity loss due to overweight and obesity: A systematic review of indirect costs. BMJ Open 2017, 7, e014632. [Google Scholar] [CrossRef] [Green Version]
- Haque, R.; Keramat, S.A.; Rahman, S.M.; Mustafa, M.U.R.; Alam, K. Association of maternal obesity with fetal and neonatal death: Evidence from South and South-East Asian countries. PLoS ONE 2021, 16, e0256725. [Google Scholar] [CrossRef]
- Tucker, C.M.; Butler, A.; Kaye, L.B.; Nolan, S.E.M.; Flenar, D.J.; Marsiske, M.; Bragg, M.; Hoover, E.; Daly, K. Impact of a Culturally Sensitive Health Self-Empowerment Workshop Series on Health Behaviors/Lifestyles, Body Mass Index, and Blood Pressure of Culturally Diverse Overweight/Obese Adults. Am. J. Lifestyle Med. 2014, 8, 122–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haby, M.M.; Markwick, A.; Peeters, A.; Shaw, J.; Vos, T. Future predictions of body mass index and overweight prevalence in Australia, 2005–2025. Health Promot. Int. 2012, 27, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.J.; Lung, T.W.C.; Bauman, A.; Howard, K. Modelling obesity trends in Australia: Unravelling the past and predicting the future. Int. J. Obes. 2017, 41, 178–185. [Google Scholar] [CrossRef]
- van Baal, P.H.M.; Polder, J.J.; de Wit, G.A.; Hoogenveen, R.T.; Feenstra, T.L.; Boshuizen, H.C.; Engelfriet, P.M.; Brouwer, W.B.F. Lifetime Medical Costs of Obesity: Prevention No Cure for Increasing Health Expenditure. PLoS Med. 2008, 5, e29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olds, T.S.; Tomkinson, G.R.; Ferrar, K.E.; Maher, C.A. Trends in the prevalence of childhood overweight and obesity in Australia between 1985 and 2008. Int. J. Obes. 2010, 34, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Wolfenden, L.; Hardy, L.L.; Wiggers, J.; Milat, A.J.; Bell, C.; Sutherland, R. Prevalence and socio-demographic associations of overweight and obesity among children attending child-care services in rural and regional Australia. Nutr. Diet. 2011, 68, 15–20. [Google Scholar] [CrossRef]
- Sacks, G.; Veerman, J.L.; Moodie, M.; Swinburn, B. Traffic-light nutrition labelling and junk-food tax: A modelled comparison of cost-effectiveness for obesity prevention. Int. J. Obes. 2011, 35, 1001–1009. [Google Scholar] [CrossRef] [Green Version]
- Veerman, J.L.; Barendregt, J.J.; Forster, M.; Vos, T. Cost-Effectiveness of Pharmacotherapy to Reduce Obesity. PLoS ONE 2011, 6, e26051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cois, A.; Day, C. Obesity trends and risk factors in the South African adult population. BMC Obes. 2015, 2, 42. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Wang, K.; Li, Y.; Alamian, A. Geographic differences in obesity prevalence and its risk factors among Asian Americans: Findings from the 2013–2014 California Health Interview Survey. Sci. Rep. 2018, 8, 12510. [Google Scholar] [CrossRef]
- Hu, L.; Huang, X.; You, C.; Li, J.; Hong, K.; Li, P.; Wu, Y.; Wu, Q.; Wang, Z.; Gao, R.; et al. Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. PLoS ONE 2017, 12, e0183934. [Google Scholar] [CrossRef] [PubMed]
- Samouda, H.; Ruiz-Castell, M.; Bocquet, V.; Kuemmerle, A.; Chioti, A.; Dadoun, F.; Kandala, N.B.; Stranges, S. Geographical variation of overweight, obesity and related risk factors: Findings from the European Health Examination Survey in Luxembourg, 2013–2015. PLoS ONE 2018, 13, e0197021. [Google Scholar] [CrossRef]
- He, Y.; Pan, A.; Wang, Y.; Yang, Y.; Xu, J.; Zhang, Y.; Liu, D.; Wang, Q.; Shen, H.; Zhang, Y.; et al. Prevalence of overweight and obesity in 15.8 million men aged 15–49 years in rural China from 2010 to 2014. Sci. Rep. 2017, 7, 5012. [Google Scholar] [CrossRef] [Green Version]
- Wooden, M.; Freidin, S.; Watson, N. The Household, Income and Labour Dynamics in Australia (HILDA) Survey: Wave 1. Aust. Econ. Rev. 2002, 35, 339–348. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Socio-Economic Indexes for Areas (SEIFA)—2016; ABS: Canberra, Australia, 2018.
- Keramat, S.A.; Alam, K.; Gow, J.; Biddle, S.J.H. Impact of Disadvantaged Neighborhoods and Lifestyle Factors on Adult Obesity: Evidence From a 5-Year Cohort Study in Australia. Am. J. Health Promot. 2021, 35, 28–37. [Google Scholar] [CrossRef]
- Keramat, S.A.; Alam, K.; Gow, J.; Biddle, S.J.H. Job-Related Characteristics and Obesity in Australian Employees: Evidence From a Longitudinal Nationally Representative Sample. Am. J. Health Promot. 2020, 34, 729–739. [Google Scholar] [CrossRef]
- Menigoz, K.; Nathan, A.; Heesch, K.C.; Turrell, G. Neighbourhood disadvantage, geographic remoteness and body mass index among immigrants to Australia: A national cohort study 2006–2014. PLoS ONE 2018, 13, e0191729. [Google Scholar] [CrossRef] [Green Version]
- Kuntz, B.; Lampert, T. Socioeconomic Factors and Obesity. Dtsch. Aerzteblatt Online 2010, 107, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.M. Why Do College Graduates Behave More Healthfully Than Those Who Are Less Educated? J. Health Soc. Behav. 2017, 58, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Fakhouri, T.H.; Carroll, M.D.; Hales, C.M.; Fryar, C.D.; Li, X.; Freedman, D.S. Prevalence of Obesity Among Adults, by Household Income and Education—United States, 2011–2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1369–1373. [Google Scholar] [CrossRef]
- Kalkunte, S.S.; Mselle, T.F.; Norris, W.E.; Wira, C.R.; Sentman, C.L.; Sharma, S. Vascular Endothelial Growth Factor C Facilitates Immune Tolerance and Endovascular Activity of Human Uterine NK Cells at the Maternal-Fetal Interface. J. Immunol. 2009, 182, 4085–4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Institute of Health and Welfare. Australia’ s Health 2018; Cat. No. AUS 222; AIHW: Canberra, Australia, 2018.
- Ahmad, K.; Khanam, T.; Keramat, S.A.; Islam, M.I.; Kabir, E.; Khanam, R. Interaction between the place of residence and wealth on the risk of overweight and obesity in Bangladeshi women. PLoS ONE 2020, 15, e0243349. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Rural & Remote Health; Cat. No: PHE 255; AIHW: Canberra, Australia, 2017.
Characteristics | Baseline Wave (2006) | Final Wave (2019) | Pooled in All Waves (2006 to 2019) | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Outcome variable | ||||||
BMI | ||||||
Underweight | 342 | 3.17 | 350 | 2.34 | 4870 | 2.66 |
Healthy weight | 4588 | 42.56 | 5509 | 36.82 | 72,573 | 39.62 |
Overweight | 3615 | 33.53 | 5067 | 33.87 | 62,299 | 34.01 |
Obesity | 2235 | 20.73 | 4036 | 26.98 | 43,441 | 23.71 |
Exposures and covariates | ||||||
Index of economic resources | ||||||
Q1 (least advantaged) | 3147 | 29.19 | 4201 | 28.08 | 53,022 | 28.94 |
Q2 | 2168 | 20.11 | 3026 | 20.22 | 36,212 | 19.77 |
Q3 | 2294 | 21.28 | 3100 | 20.72 | 37,995 | 20.74 |
Q4 | 1213 | 11.25 | 1571 | 10.5 | 19,769 | 10.79 |
Q5 (most advantaged) | 1958 | 18.16 | 3064 | 20.48 | 36,185 | 19.75 |
Place of residence | ||||||
Major cities | 6939 | 64.37 | 9936 | 66.41 | 121,289 | 66.21 |
Regional cities | 3669 | 34.04 | 4846 | 32.39 | 59,316 | 32.38 |
Remote areas | 172 | 1.6 | 180 | 1.2 | 2578 | 1.41 |
Age groups | ||||||
15–24 years | 1888 | 17.51 | 2200 | 14.7 | 30,503 | 16.65 |
25–34 years | 1536 | 14.25 | 2671 | 17.85 | 28,590 | 15.61 |
35–44 years | 2085 | 19.34 | 2186 | 14.61 | 29,528 | 16.12 |
45–54 years | 2006 | 18.61 | 2336 | 15.61 | 32,507 | 17.75 |
55–64 years | 1499 | 13.91 | 2435 | 16.27 | 28,310 | 15.45 |
≥65 years | 1766 | 16.38 | 3134 | 20.95 | 33,745 | 18.42 |
Gender | ||||||
Male | 5115 | 47.45 | 7139 | 47.71 | 86,912 | 47.45 |
Female | 5665 | 52.55 | 7823 | 52.29 | 96,271 | 52.55 |
Civil Status | ||||||
Cohabitating | 6324 | 58.7 | 8871 | 59.29 | 108,220 | 59.08 |
Non-cohabitating | 4456 | 41.3 | 6091 | 40.71 | 74,963 | 40.92 |
Education | ||||||
Year 12 and below | 5455 | 50.6 | 5772 | 38.58 | 80,467 | 43.93 |
Professional qualifications | 3030 | 28.11 | 4955 | 33.12 | 56,853 | 31.04 |
University qualifications | 2295 | 21.29 | 4235 | 28.31 | 45,863 | 25.04 |
Household yearly disposable income quintile | ||||||
Quintile 1 (lowest) | 2156 | 20.00 | 2995 | 20.02 | 36,641 | 20.00 |
Quintile 2 | 2157 | 20.01 | 2991 | 19.99 | 36,634 | 20.00 |
Quintile 3 | 2155 | 19.99 | 2993 | 20.00 | 36,637 | 20.00 |
Quintile 4 | 2157 | 20.01 | 2994 | 20.01 | 36,635 | 20.00 |
Quintile 5 (highest) | 2155 | 19.99 | 2989 | 19.98 | 36,636 | 20.00 |
Labour force status | ||||||
Employed | 7007 | 65 | 9536 | 63.73 | 117,202 | 63.98 |
Unemployed | 338 | 3.14 | 565 | 3.78 | 6567 | 3.58 |
Not in the labour force | 3435 | 31.86 | 4861 | 32.49 | 59,414 | 32.43 |
Indigenous status | ||||||
Non-indigenous | 10,533 | 97.71 | 14,431 | 96.45 | 178,009 | 97.18 |
Aboriginal or Torres Strait Islander | 247 | 2.29 | 531 | 3.55 | 5174 | 2.82 |
Smoking status | ||||||
Never smoked | 5576 | 51.73 | 8444 | 56.44 | 99,583 | 54.36 |
Ex-smoker | 2955 | 27.41 | 4114 | 27.50 | 50,659 | 27.65 |
Current smoker | 2249 | 20.86 | 2404 | 16.07 | 32,941 | 17.98 |
Alcohol consumption | ||||||
Never drank | 1131 | 10.49 | 1688 | 11.28 | 20,116 | 10.98 |
Ex-drinker | 655 | 6.08 | 1281 | 8.56 | 13,532 | 7.39 |
Only rarely to 4 days/week | 7163 | 66.45 | 9999 | 66.83 | 122,279 | 66.75 |
4+ days/week | 1831 | 16.99 | 1994 | 13.33 | 27,256 | 14.88 |
Physical activity (≥30 min) | ||||||
Below the recommended level | 7042 | 65.32 | 9867 | 65.95 | 120,950 | 66.03 |
Recommended level | 3738 | 34.68 | 5095 | 34.05 | 62,233 | 33.97 |
Exposures | Model 1 a | Model 2 b |
---|---|---|
Overweight Versus Healthy Weight | Obesity Versus Healthy Weight | |
AOR (95% CI), p-Value | AOR (95% CI), p-Value | |
Index of economic resources | ||
Q1 (least advantaged) | 1.04 (0.95–1.14), 0.43 | 2.04 (1.57–2.65), <0.001 |
Q2 | 0.95 (0.86–1.05), 0.34 | 1.51 (1.15–1.98), 0.01 |
Q3 | 0.99 (0.90–1.10), 0.91 | 1.41 (1.08–1.85), 0.01 |
Q4 | 1.03 (0.91–1.16), 0.64 | 1.14 (0.82–1.58), 0.43 |
Q5 (most advantaged) (ref) | ||
Place of residence | ||
Major cities (ref) | ||
Regional cities | 1.15 (1.06–1.26), 0.01 | 1.71 (1.34–2.19), <0.001 |
Remote areas | 1.10 (0.83–1.45), 0.66 | 1.61 (0.71–3.66), 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keramat, S.A.; Sathi, N.J.; Haque, R.; Ahammed, B.; Chowdhury, R.; Hashmi, R.; Ahmad, K. Neighbourhood Socio-Economic Circumstances, Place of Residence and Obesity amongst Australian Adults: A Longitudinal Regression Analysis Using 14 Annual Waves of the HILDA Cohort. Obesities 2021, 1, 178-188. https://doi.org/10.3390/obesities1030016
Keramat SA, Sathi NJ, Haque R, Ahammed B, Chowdhury R, Hashmi R, Ahmad K. Neighbourhood Socio-Economic Circumstances, Place of Residence and Obesity amongst Australian Adults: A Longitudinal Regression Analysis Using 14 Annual Waves of the HILDA Cohort. Obesities. 2021; 1(3):178-188. https://doi.org/10.3390/obesities1030016
Chicago/Turabian StyleKeramat, Syed Afroz, Nusrat Jahan Sathi, Rezwanul Haque, Benojir Ahammed, Rupok Chowdhury, Rubayyat Hashmi, and Kabir Ahmad. 2021. "Neighbourhood Socio-Economic Circumstances, Place of Residence and Obesity amongst Australian Adults: A Longitudinal Regression Analysis Using 14 Annual Waves of the HILDA Cohort" Obesities 1, no. 3: 178-188. https://doi.org/10.3390/obesities1030016
APA StyleKeramat, S. A., Sathi, N. J., Haque, R., Ahammed, B., Chowdhury, R., Hashmi, R., & Ahmad, K. (2021). Neighbourhood Socio-Economic Circumstances, Place of Residence and Obesity amongst Australian Adults: A Longitudinal Regression Analysis Using 14 Annual Waves of the HILDA Cohort. Obesities, 1(3), 178-188. https://doi.org/10.3390/obesities1030016