Disrupting the Mood and Obesity Cycle: The Potential Role of Metformin
Abstract
:1. Introduction
2. Obesity and Metabolic Dysfunction
3. Relations between Mood Dysregulation and Metabolic Dysfunction
4. Relationship between Cognitive Function and Metabolic Dysfunction
5. Mechanisms Linking Metabolic Health, Mood, and Cognitive Functioning
6. Metformin Provides an Exciting Pharmaceutical Intervention with Potential to Restore Metabolic Health while Simultaneously Improving Mood and Cognition
7. Metformin on Mood and Cognition
8. Discussion and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, G.E.; Marzullo, P.; Ricotti, R.; Bona, G.; Prodam, F. The pathophysiology of abdominal adipose tissue depots in health and disease. Horm. Mol. Biol. Clin. Investig. 2014, 19, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief 2020, 360, 1–8. [Google Scholar]
- Khan, L.K.; Sobush, K.; Keener, D.; Goodman, K.; Lowry, A.; Kakietek, J.; Zaro, S. Recommended Community Strategies and Measurements to Prevent Obesity in the United States. MMWR Recommnedations Rep. 2009, 58, 1–29. [Google Scholar]
- Nicklas, J.M.; Huskey, K.W.; Davis, R.B.; Wee, C.C. Successful weight loss among obese U.S. adults. Am. J. Prev. Med. 2012, 42, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Kraschnewski, J.L.; Boan, J.; Esposito, J.; Sherwood, N.E.; Lehman, E.B.; Kephart, D.K.; Sciamanna, C.N. Long-term weight loss maintenance in the United States. Int. J. Obes. 2010, 34, 1644–1654. [Google Scholar] [CrossRef] [Green Version]
- Snook, K.R.; Hansen, A.R.; Duke, C.H.; Finch, K.C.; Hackney, A.A.; Zhang, J. Change in Percentages of Adults with Overweight or Obesity Trying to Lose Weight, 1988–2014. JAMA 2017, 317, 971–973. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Lind, E. Exercise does not feel the same when you are overweight: The impact of self-selected and imposed intensity on affect and exertion. Int. J. Obes. 2006, 30, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, E.; Larsson, U.E.; Rössner, S. Is walking for exercise too exhausting for obese women? Int. J. Obes. Relat. Metab. Disord. 1997, 21, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Hulens, M.; Vansant, G.; Claessens, A.L.; Lysens, R.; Muls, E. Predictors of 6-minute walk test results in lean, obese and morbidly obese women. Scand. J. Med. Sci. Sport. 2003, 13, 98–105. [Google Scholar] [CrossRef]
- Favieri, F.; Forte, G.; Casagrande, M. The Executive Functions in Overweight and Obesity: A Systematic Review of Neuro-psychological Cross-Sectional and Longitudinal Studies. Front. Psychol. 2019, 10, 2126. [Google Scholar] [CrossRef] [Green Version]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Shimobayashi, M.; Albert, V.; Woelnerhanssen, B.; Frei, I.C.; Weissenberger, D.; Meyer-Gerspach, A.C.; Clement, N.; Moes, S.; Colombi, M.; Meier, J.A.; et al. Insulin resistance causes inflammation in adipose tissue. J. Clin. Investig. 2018, 128, 1538–1550. [Google Scholar] [CrossRef]
- Pedersen, D.J.; Guilherme, A.; Danai, L.V.; Heyda, L.; Matevossian, A.; Cohen, J.; Nicoloro, S.M.; Straubhaar, J.; Noh, H.L.; Jung, D.; et al. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol. Metab. 2015, 4, 507–518. [Google Scholar] [CrossRef]
- Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 13, 633–643. [Google Scholar] [CrossRef]
- de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Parikh, R.M.; Mohan, V. Changing definitions of metabolic syndrome. Indian J. Endocrinol. Metab. 2012, 16, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Obesity, Metabolic Syndrome, and Cardiovascular Disease. J. Clin. Endocrinol. Metab. 2004, 89, 2595–2600. [Google Scholar] [CrossRef]
- Moore, L.L.; Chadid, S.; Singer, M.R.; Kreger, B.E.; Denis, G.V. Metabolic Health Reduces Risk of Obesity-Related Cancer in Framingham Study Adults. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2057–2065. [Google Scholar] [CrossRef] [Green Version]
- Kabat, G.C.; Kim, M.Y.; Lee, J.S.; Ho, G.Y.; Going, S.B.; Beebe-Dimmer, J.; Manson, J.E.; Chlebowski, R.T.; Rohan, T.E. Metabolic Obesity Phenotypes and Risk of Breast Cancer in Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1730–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-M.M.; White, A.J.; Nichols, H.B.; O’brien, K.M.; Weinberg, C.R.; Sandler, D.P. The association between metabolic health, obesity phenotype and the risk of breast cancer. Int. J. Cancer 2017, 140, 2657–2666. [Google Scholar] [CrossRef] [Green Version]
- Mansur, R.B.; Brietzke, E.; McIntyre, R.S. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci. Biobehav. Rev. 2015, 52, 89–104. [Google Scholar] [CrossRef] [PubMed]
- McElroy, S.L.; Kotwal, R.; Malhotra, S.; Nelson, E.B.; Keck, P.E., Jr.; Nemeroff, C.B. Are mood disorders and obesity related? A review for the mental health professional. J. Clin. Psychiatry 2004, 65, 634–651. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.E.; Von Korff, M.; Saunders, K.; Miglioretti, D.L.; Crane, P.K.; van Belle, G.; Kessler, R.C. Association Between Obesity and Psychiatric Disorders in the US Adult Population. Arch. Gen. Psychiatry 2006, 63, 824–830. [Google Scholar] [CrossRef] [Green Version]
- de Wit, L.; Luppino, F.; van Straten, A.; Penninx, B.; Zitman, F.; Cuijpers, P. Depression and obesity: A meta-analysis of community-based studies. Psychiatry Res. 2010, 178, 230–235. [Google Scholar] [CrossRef]
- Heo, M.; Pietrobelli, A.; Fontaine, K.R.; Sirey, A.J.; Faith, M.S. Depressive mood and obesity in US adults: Comparison and moderation by sex, age, and race. Int. J. Obes. 2005, 30, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Deleskog, A.; Ljung, R.; Forsell, Y.; Nevriana, A.; Almas, A.; Möller, J. Severity of depression, anxious distress and the risk of type 2 diabetes—A population-based cohort study in Sweden. BMC Public Health 2019, 19, 1174. [Google Scholar] [CrossRef] [Green Version]
- Mezuk, B.; Eaton, W.W.; Albrecht, S.; Golden, S.H. Depression and Type 2 Diabetes Over the Lifespan. Diabetes Care 2008, 31, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Shomaker, L.B.; Tanofsky-Kraff, M.; Stern, E.A.; Miller, R.; Zocca, J.M.; Field, S.E.; Yanovski, S.Z.; Hubbard, V.S.; Yanovski, J.A. Longitudinal Study of Depressive Symptoms and Progression of Insulin Resistance in Youth at Risk for Adult Obesity. Diabetes Care 2011, 34, 2458–2463. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.; Silva, N.; Golden, S.H.; Rajala, U.; Timonen, M.; Stahl, D.; Ismail, K. A Systematic Review and Meta-analysis of the Association Between Depression and Insulin Resistance. Diabetes Care 2013, 36, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Carr, D.; Friedman, M.A.; Jaffe, K. Understanding the relationship between obesity and positive and negative affect: The role of psychosocial mechanisms. Body Image 2007, 4, 165–177. [Google Scholar] [CrossRef]
- Pasco, A.J.; Williams, L.; Jacka, F.N.; Brennan-Olsen, S.; Berk, M. Obesity and the relationship with positive and negative affect. Aust. N. Z. J. Psychiatry 2013, 47, 477–482. [Google Scholar] [CrossRef]
- Jorm, A.F.; Korten, A.E.; Christensen, H.; Jacomb, P.A.; Rodgers, B.; Parslow, R.A. Association of obesity with anxiety, depression and emotional well-being: A community survey. Aust. N. Z. J. Public Health 2003, 27, 434–440. [Google Scholar] [CrossRef]
- Roshanaei-Moghaddam, B.; Katon, W.J.; Russo, J. The longitudinal effects of depression on physical activity. Gen. Hosp. Psychiatry 2009, 31, 306–315. [Google Scholar] [CrossRef]
- Oliver, G.; Wardle, J.; Gibson, E.L. Stress and Food Choice: A Laboratory Study. Psychosom. Med. 2000, 62, 853–865. [Google Scholar] [CrossRef]
- Hryhorczuk, C.; Sharma, S.; Fulton, S.E. Metabolic disturbances connecting obesity and depression. Front. Neurosci. 2013, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Fabricatore, A.N.; Wadden, T.A. Psychological aspects of obesity. Clin. Dermatol. 2004, 22, 332–337. [Google Scholar] [CrossRef]
- El Asmar, K.; Fève, B.; Colle, R.; Trabado, S.; Verstuyft, C.; Gressier, F.; Vievard, A.; Haffen, E.; Polosan, M.; Ferreri, F.; et al. Early weight gain predicts later metabolic syndrome in depressed patients treated with antidepressants: Findings from the METADAP cohort. J. Psychiatr. Res. 2018, 107, 120–127. [Google Scholar] [CrossRef]
- Newcomer, J.W.; Eriksson, H.; Zhang, P.; Meehan, S.R.; Weiss, C. Changes in Metabolic Parameters and Body Weight in Patients with Major Depressive Disorder Treated With Adjunctive Brexpiprazole: Pooled Analysis of Phase 3 Clinical Studies. J. Clin. Psychiatry 2019, 80, 2120. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Sharma, M.S.; Brunoni, A.R.; Vieta, E.; Fava, G.A. The Safety, Tolerability and Risks Associated with the Use of Newer Generation Antidepressant Drugs: A Critical Review of the Literature. Psychother. Psychosom. 2016, 85, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.S.; Seo, H.-J.; McIntyre, R.S.; Bahk, W.-M. Obesity and Its Potential Effects on Antidepressant Treatment Outcomes in Patients with Depressive Disorders: A Literature Review. Int. J. Mol. Sci. 2016, 17, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzhko, S.; Aboushawareb, S.A.; Kudrina, I.; Schuster, T.; Barnett, T.A.; Renoux, C.; Bartlett, G. Excess body weight as a predictor of response to treatment with antidepressants in patients with depressive disorder. J. Affect. Disord. 2020, 267, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shields, G.S.; Guo, C.; Liu, Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci. Biobehav. Rev. 2018, 84, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.M.; Zelazo, P.D.; Faja, S. Executive function. In Oxford Library of Psychology. The Oxford Handbook of Developmental Psychology: Body and Mind; Zelazo, P.D., Ed.; Oxford University Press: Oxford, UK, 2013; Volume 1, pp. 706–743. [Google Scholar]
- Rangel, A.; Camerer, C.; Montague, P.R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 2008, 9, 545–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troyer, A.K.; Moscovitch, M.; Winocur, G. Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology 1997, 11, 138–146. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Fischer, J.S. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Banich, M.T. Executive Function: The Search for an Integrated Account. Curr. Dir. Psychol. Sci. 2009, 18, 89–94. [Google Scholar] [CrossRef]
- Gunstad, J.; Lhotsky, A.; Wendell, C.R.; Ferrucci, L.; Zonderman, A.B. Longitudinal Examination of Obesity and Cognitive Function: Results from the Baltimore Longitudinal Study of Aging. Neuroepidemiology 2010, 34, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Cubillo, I.; Periáñez, J.; Adrover-Roig, D.; Rodríguez-Sánchez, J.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.; Beiser, A.; Elias, M.; Au, R.; Vasan, R.; Seshadri, S. Relation of Obesity to Cognitive Function: Importance of Central Obesity and Synergistic Influence of Concomitant Hypertension. The Framingham Heart Study. Curr. Alzheimer Res. 2007, 4, 111–116. [Google Scholar] [CrossRef]
- Sabia, S.; Kivimaki, M.; Shipley, M.J.; Marmot, M.G.; Singh-Manoux, M. Body mass index over the adult life course and cognition in late midlife: The Whitehall II Cohort Study. Am. J. Clin. Nutr. 2009, 89, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Goit, R.K.; Taylor, A.W.; Lo, A.C.Y. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur. J. Pharmacol. 2022, 924, 174956. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, E.; Botticelli, L.; Tomassoni, D.; Tayebati, S.K.; Micioni Di Bonaventura, M.V.; Cifani, C. The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 2020, 12, 3502. [Google Scholar] [CrossRef]
- Goudriaan, A.E.; Oosterlaan, J.; de Beurs, E.; Van den Brink, W. Pathological gambling: A comprehensive review of biobehavioral findings. Neurosci. Biobehav. Rev. 2004, 28, 123–141. [Google Scholar] [CrossRef]
- Appelhans, B.M. Neurobehavioral Inhibition of Reward-driven Feeding: Implications for Dieting and Obesity. Obesity 2009, 17, 640–647. [Google Scholar] [CrossRef]
- Singh, M. Mood, food, and obesity. Front. Psychol. 2014, 5, 925. [Google Scholar] [CrossRef] [Green Version]
- Kandiah, J.; Yake, M.; Jones, J.; Meyer, M. Stress influences appetite and comfort food preferences in college women. Nutr. Res. 2006, 26, 118–123. [Google Scholar] [CrossRef]
- Gardner, M.P.; Wansink, B.; Kim, J.; Park, S. Better moods for better eating?: How mood influences food choice. J. Consum. Psychol. 2014, 24, 320–335. [Google Scholar] [CrossRef]
- Poole, L.; Steptoe, A.; Wawrzyniak, A.J.; Bostock, S.; Mitchell, E.; Hamer, M. Associations of objectively measured physical activity with daily mood ratings and psychophysiological stress responses in women. Psychophysiology 2011, 48, 1165–1172. [Google Scholar] [CrossRef]
- Wegner, K.E.; Smyth, J.M.; Crosby, R.D.; Wittrock, D.; Wonderlich, S.A.; Mitchell, J.E. An evaluation of the relationship between mood and binge eating in the natural environment using ecological momentary assessment. Int. J. Eat. Disord. 2002, 32, 352–361. [Google Scholar] [CrossRef]
- Wurtman, J.; Wurtman, R. The Trajectory from Mood to Obesity. Curr. Obes. Rep. 2018, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Plieger, T.; Reuter, M. Stress & executive functioning: A review considering moderating factors. Neurobiol. Learn. Mem. 2020, 173, 107254. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol. Bull. 2013, 139, 81–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J.; Kamper-DeMarco, K.; Chen, X.; Orom, H. Too stressed to self-regulate? Associations between stress, self-reported executive function, disinhibited eating, and BMI in women. Eat. Behav. 2020, 39, 101417. [Google Scholar] [CrossRef] [PubMed]
- Golden, S.H. A Review of the Evidence for a Neuroendocrine Link Between Stress, Depression and Diabetes Mellitus. Curr. Diabetes Rev. 2007, 3, 252–259. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Leslie, S.M.; Packer, M.M.; Zaiko, Y.V.; Phillips, O.R.; Weisman, E.F.; Wall, D.M.; Jo, B.; Rasgon, N. Brain and behavioral correlates of insulin resistance in youth with depression and obesity. Horm. Behav. 2019, 108, 73–83. [Google Scholar] [CrossRef]
- Bose, M.; Oliván, B.; Laferrère, B. Stress and obesity: The role of the hypothalamic–pituitary–adrenal axis in metabolic disease. Curr. Opin. Endocrinol. Diabetes 2009, 16, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef]
- Mann, J.N.; Thakore, J.H. Melancholic Depression and Abdominal Fat Distribution: A Mini-Review. Stress 1999, 3, 1–15. [Google Scholar] [CrossRef]
- Casanova, F.; O’Loughlin, J.; Martin, S.; Beaumont, R.N.; Wood, A.R.; Watkins, E.R.; Freathy, R.M.; Hagenaars, S.P.; Frayling, T.M.; Yaghootkar, H.; et al. Higher adiposity and mental health: Causal inference using Mendelian randomization. Hum. Mol. Genet. 2021, 30, 2371–2382. [Google Scholar] [CrossRef]
- Dallman, M.F. Stress-induced obesity and the emotional nervous system. Trends Endocrinol. Metab. 2010, 21, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Groesz, L.M.; McCoy, S.; Carl, J.; Saslow, L.; Stewart, J.; Adler, N.; Laraia, B.; Epel, E. What is eating you? Stress and the drive to eat. Appetite 2011, 58, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Ng, D.M.; Jeffery, R.W. Relationships Between Perceived Stress and Health Behaviors in a Sample of Working Adults. Health Psychol. 2003, 22, 638–642. [Google Scholar] [CrossRef]
- Boutelle, K.N.; Murray, D.M.; Jeffery, R.W.; Hennrikus, D.J.; Lando, H.A. Associations between Exercise and Health Behaviors in a Community Sample of Working Adults. Prev. Med. 2000, 30, 217–224. [Google Scholar] [CrossRef]
- Stetson, B.A.; Rahn, J.M.; Dubbert, P.M.; Wilner, B.J.; Mercury, M.G. Prospective evaluation of the effects of stress on exercise adherence in community-residing women. Health Psychol. 1997, 16, 515–520. [Google Scholar] [CrossRef]
- Kloiber, S.; Ising, M.; Reppermund, S.; Horstmann, S.; Dose, T.; Majer, M.; Zihl, J.; Pfister, H.; Unschuld, P.G.; Holsboer, F.; et al. Overweight and Obesity Affect Treatment Response in Major Depression. Biol. Psychiatry 2007, 62, 321–326. [Google Scholar] [CrossRef]
- Oskooilar, N.; Wilcox, C.S.; Tong, M.-L.; Grosz, D.E. Body Mass Index and Response to Antidepressants in Depressed Research Subjects. J. Clin. Psychiatry 2009, 70, 1609–1610. [Google Scholar] [CrossRef] [Green Version]
- Legenbauer, T.; Petrak, F.; de Zwaan, M.; Herpertz, S. Influence of depressive and eating disorders on short- and long-term course of weight after surgical and nonsurgical weight loss treatment. Compr. Psychiatry 2011, 52, 301–311. [Google Scholar] [CrossRef]
- Somerset, S.; Graham, L.; Markwell, K. Depression scores predict adherence in a dietary weight loss intervention trial. Clin. Nutr. 2011, 30, 593–598. [Google Scholar] [CrossRef]
- Ohsiek, S.; Williams, M. Psychological factors influencing weight loss maintenance: An integrative literature review. J. Am. Acad. Nurse Pract. 2011, 23, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Trief, P.M.; Cibula, D.; Delahanty, L.M.; Weinstock, R.S. Depression, stress, and weight loss in individuals with metabolic syndrome in SHINE, a DPP translation study. Obesity 2014, 22, 2532–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, C.R.; Gullion, C.M.; Funk, K.L.; DeBar, L.L.; Lindberg, N.M.; Stevens, V.J. Impact of sleep, screen time, depression and stress on weight change in the intensive weight loss phase of the LIFE study. Int. J. Obes. 2011, 36, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulconbridge, L.F.; Wadden, T.A.; Rubin, R.R.; Wing, R.R.; Walkup, M.P.; Fabricatore, A.N.; Coday, M.; Van Dorsten, B.; Mount, D.L.; Ewing, L.J.; et al. One-Year Changes in Symptoms of Depression and Weight in Overweight/Obese Individuals with Type 2 Diabetes in the Look AHEAD Study. Obesity 2012, 20, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagoto, S.; Schneider, K.L.; Whited, M.C.; Oleski, J.L.; Merriam, P.; Appelhans, B.; Ma, Y.; Olendzki, B.; Waring, E.M.; Busch, A.M.; et al. Randomized controlled trial of behavioral treatment for comorbid obesity and depression in women: The Be Active Trial. Int. J. Obes. 2013, 37, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Simon, G.E.; Rohde, P.; Ludman, E.J.; Jeffery, R.W.; Linde, J.A.; Operskalski, B.H.; Arterburn, D. Association between change in depression and change in weight among women enrolled in weight loss treatment. Gen. Hosp. Psychiatry 2010, 32, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Kyrou, I.; Tsigos, C. Stress hormones: Physiological stress and regulation of metabolism. Curr. Opin. Pharmacol. 2009, 9, 787–793. [Google Scholar] [CrossRef]
- Otto, M.W.; Rosenfield, D.; Gorlin, E.I.; Hoyt, D.L.; Patten, E.A.; Bickel, W.K.; Zvolensky, M.J.; Doan, S.N. Targeting cognitive and emotional regulatory skills for smoking prevention in low-SES youth: A randomized trial of mindfulness and working memory interventions. Addict. Behav. 2019, 104, 106262. [Google Scholar] [CrossRef]
- Grave, R.D.; Calugi, S.; Corica, F.; Di Domizio, S.; Marchesini, G. Psychological Variables Associated with Weight Loss in Obese Patients Seeking Treatment at Medical Centers. J. Am. Diet. Assoc. 2009, 109, 2010–2016. [Google Scholar] [CrossRef]
- Rieckmann, N.; Gerin, W.; Kronish, I.M.; Burg, M.M.; Chaplin, W.F.; Kong, G.; Lespérance, F.; Davidson, K.W. Course of depressive symptoms and medication adherence after acute coronary syndromes: An electronic medication monitoring study. J. Am. Coll. Cardiol. 2006, 48, 2218–2222. [Google Scholar] [CrossRef] [Green Version]
- Bauer, L.K.; Caro, M.A.; Beach, S.R.; Mastromauro, C.A.; Lenihan, E.; Januzzi, J.L.; Huffman, J.C. Effects of Depression and Anxiety Improvement on Adherence to Medication and Health Behaviors in Recently Hospitalized Cardiac Patients. Am. J. Cardiol. 2012, 109, 1266–1271. [Google Scholar] [CrossRef]
- Soczynska, J.K.; Kennedy, S.H.; Woldeyohannes, H.O.; Liauw, S.S.; Alsuwaidan, M.; Yim, C.Y.; McIntyre, R.S. Mood Disorders and Obesity: Understanding Inflammation as a Pathophysiological Nexus. NeuroMol. Med. 2010, 13, 93–116. [Google Scholar] [CrossRef]
- Miller, A.A.; Spencer, S.J. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Shah, P. Short- and long-term benefits of cognitive training. Proc. Natl. Acad. Sci. USA 2011, 108, 10081–10086. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, S.G.; Sawyer, A.T.; Witt, A.A.; Oh, D. The effect of mindfulness-based therapy on anxiety and depression: A meta-analytic review. J. Consult. Clin. Psychol. 2010, 78, 169–183. [Google Scholar] [CrossRef]
- Alonso-Pedrero, L.; Bes-Rastrollo, M.; Marti, A. Effects of antidepressant and antipsychotic use on weight gain: A systematic review. Obes. Rev. 2019, 20, 1680–1690. [Google Scholar] [CrossRef]
- Rubin, R.R.; Ma, Y.; Marrero, D.G.; Peyrot, M.; Barrett-Connor, E.L.; Kahn, S.E.; Haffner, S.M.; Price, D.W.; Knowler, W.C. Elevated Depression Symptoms, Antidepressant Medicine Use, and Risk of Developing Diabetes During the Diabetes Prevention Program. Diabetes Care 2008, 31, 420. [Google Scholar] [CrossRef] [Green Version]
- Glucophage Package Insert; Bristol-Myers Squibb Company: Princeton, NJ, USA, 2018.
- Howell, J.J.; Hellberg, K.; Turner, M.; Talbott, G.; Kolar, M.J.; Ross, D.S.; Hoxhaj, G.; Saghatelian, A.; Shaw, R.J.; Manning, B.D. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab. 2017, 25, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Labuzek, K.; Liber, S.; Gabryel, B.; Adamczyk, J.; Okopieñ, B. Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia. Naunyn Schmiedebergs Arch. Pharm. 2010, 381, 171–186. [Google Scholar] [CrossRef]
- Łabuzek, K.; Suchy, D.; Gabryel, B.; Bielecka, A.; Liber, S.; Okopień, B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol. Rep. 2010, 62, 956–965. [Google Scholar] [CrossRef]
- Orchard, T.; Temprosa, M.; Goldberg, R.; Haffner, S.; Ratner, R.; Marcovina, S.; Fowler, S.; for the Diabetes Prevention Program Research Group. The Effect of Metformin and Intensive Lifestyle Intervention on the Metabolic Syndrome: The Diabetes Prevention Program Randomized Trial. Ann. Intern. Med. 2005, 142, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A. Type 2 diabetes, related conditions, in relation and dementia: An opportunity for prevention? J. Alzheimer's Dis. 2010, 20, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin Inhibits Advanced Glycation End Products (AGEs)-induced Renal Tubular Cell Injury by Suppressing Reactive Oxygen Species Generation via Reducing Receptor for AGEs (RAGE) Ex-pression. Horm. Metab. Res. 2012, 44, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S.-I. Beneficial effects of metformin and irbesartan on advanced glycation end products (AGEs)–RAGE-induced proximal tubular cell injury. Pharmacol. Res. 2012, 65, 297–302. [Google Scholar] [CrossRef]
- Haffner, S.; Temprosa, M.; Crandall, J.; Fowler, S.; Goldberg, R.; Horton, E.; Marcovina, S.; Mather, K.; Orchard, T.; Ratner, R.; et al. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes 2005, 54, 1566–1572. [Google Scholar]
- Pintana, H.; Apaijai, N.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci. 2012, 91, 409–414. [Google Scholar] [CrossRef]
- Zemdegs, J.; Quesseveur, G.; Jarriault, D.; Pénicaud, L.; Fioramonti, X.; Guiard, B.P. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br. J. Pharmacol. 2015, 173, 2095–2110. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.M.; Mancano, G.; Kashofer, K.; Liebisch, G.; Farzi, A.; Zenz, G.; Claus, S.P.; Holzer, P. Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin. Nutr. Neurosci. 2020, 25, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Au–Komada, M.; Au–Takao, K.; Au–Miyakawa, T. Elevated Plus Maze for Mice. JoVE 2008, 22, e1088. [Google Scholar]
- Zemdegs, J.; Martin, H.; Pintana, H.; Bullich, S.; Manta, S.; Marqués, M.A.; Moro, C.; Layé, S.; Ducrocq, F.; Chattipakorn, N.; et al. Metformin Promotes Anxiolytic and Antidepres-sant-Like Responses in Insulin-Resistant Mice by Decreasing Circulating Branched-Chain Amino Acids. J. Neuro-Sci. 2019, 39, 5935–5948. [Google Scholar]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Riera-Borrull, M.; García-Heredia, A.; Fernández-Arroyo, S.; Hernández-Aguilera, A.; Cabré, N.; Cuyàs, E.; Luciano-Mateo, F.; Camps, J.; Menendez, J.A.; Joven, J. Metformin Potentiates the Benefits of Dietary Restraint: A Metabolomic Study. Int. J. Mol. Sci. 2017, 18, 2263. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.-R.; Xu, X.-C.; Xu, F.; Zhang, W.-L.; Zhang, W.-L.; Liu, L.-M.; Wang, W.-P. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem. Biophys. Res. Commun. 2014, 448, 414–417. [Google Scholar] [CrossRef]
- Adedeji, H.A.; Ishola, I.O.; Adeyemi, O.O. Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: Potential in the treatment of Parkinson’s disease? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 245–251. [Google Scholar] [CrossRef]
- Mostafa, D.K.; Ismail, C.A.; Ghareeb, D.A. Differential metformin dose-dependent effects on cognition in rats: Role of Akt. Psychopharmacology 2016, 233, 2513–2524. [Google Scholar] [CrossRef]
- Khedr, S.A.; Elmelgy, A.A.; El-Kharashi, O.A.; Abd-Alkhalek, H.A.; Louka, M.L.; Sallam, H.A.; Aboul-Fotouh, S. Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: Potential involvement of hippocampal c-Jun repression. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 407–422. [Google Scholar] [CrossRef]
- Momeni, Z.; Neapetung, J.; Pacholko, A.; Kiir, T.A.B.; Yamamoto, Y.; Bekar, L.K.; Campanucci, V.A. Hyperglycemia induces RAGE-dependent hippocampal spatial memory impairments. Physiol. Behav. 2020, 229, 113287. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, Y.; Jin, X.; Chen, C.; Lu, Y.; Liu, L.; Shen, C. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression. J. Diabetes Res. 2016, 2016, 4847812. [Google Scholar] [CrossRef] [Green Version]
- Shin, A.C.; Balasubramanian, P.; Suryadevara, P.; Zyskowski, J.; Herdt, T.H.; MohanKumar, S.M.J.; MohanKumar, P.S. Metformin effectively restores the HPA axis function in diet-induced obese rats. Int. J. Obes. 2020, 45, 383–395. [Google Scholar] [CrossRef]
- Hao, Y.; Tong, Y.; Guo, Y.; Lang, X.; Huang, X.; Xie, X.; Guan, Y.; Li, Z. Metformin Attenuates the Metabolic Disturbance and Depression-like Behaviors Induced by Corticosterone and Mediates the Glucose Metabolism Pathway. Pharmacopsychiatry 2021, 54, 131–141. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, T.; Guo, A.-M.; Chen, W.-B.; Lin, D.; Liu, Z.-Y.; Fei, E.-K. Metformin Ameliorates Lipopolysaccharide-Induced Depressive-Like Behaviors and Abnormal Glutamatergic Transmission. Biology 2020, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, X.; Xu, Y.; Hao, Y.; Meng, X. Effects of metformin on lipopolysaccharide-induced depressive-like behavior in mice and its mechanisms. Neuroreport 2020, 31, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.A.; Kurz, J.; Senn, W.; Escher, G.; Mohaupt, M.G. Stress-induced alterations of social behavior are reversible by antagonism of steroid hormones in C57/BL6 mice. Naunyn Schmiedebergs Arch. Pharm. 2021, 394, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Huang, Z.; Cui, Z.; Li, L.; Liu, W.; Qi, Z. Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice. J. Affect. Disord. 2018, 246, 486–497. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, J.; Hong, L.; Huang, W.; Dai, X.; Ye, Q.; Chen, X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J. Affect. Disord. 2019, 260, 302–313. [Google Scholar] [CrossRef]
- Martin-Montalvo, A.; Mercken, E.M.; Mitchell, S.J.; Palacios, H.H.; Mote, P.L.; Scheibye-Knudsen, M.; Gomes, A.P.; Ward, T.M.; Minor, R.K.; Blouin, M.-J.; et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Wu, F.; Li, D.; Yang, L.; Li, Q.; Li, R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol. Cell. Endocrinol. 2018, 461, 256–264. [Google Scholar] [CrossRef]
- Grigolon, R.B.; Brietzke, E.; Mansur, R.B.; Idzikowski, M.A.; Gerchman, F.; De Felice, F.G.; McIntyre, R.S. Association between diabetes and mood disorders and the potential use of anti-hyperglycemic agents as antidepressants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 95, 109720. [Google Scholar] [CrossRef]
- Wahlqvist, M.L.; Lee, M.-S.; Chuang, S.-Y.; Hsu, C.-C.; Tsai, H.-N.; Yu, S.-H.; Chang, H.-Y. Increased risk of affective disorders in type 2 diabetes is minimized by sulfonylurea and metformin combination: A population-based cohort study. BMC Med. 2012, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.H. The Stigma of Mental Illness in Asian Cultures. Aust. N. Z. J. Psychiatry 1997, 31, 382–390. [Google Scholar] [CrossRef]
- Chen, F.; Wei, G.; Wang, Y.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Wang, D. Risk factors for depression in elderly diabetic patients and the effect of metformin on the condition. BMC Public Health 2019, 19, 1063. [Google Scholar] [CrossRef] [Green Version]
- Hahn, S.; Janssen, E.O.; Tan, S.; Pleger, K.; Mann, K.; Schedlowski, M.; Kimmig, R.; Benson, S.; Balamitsa, E.; Elsenbruch, S. Clinical and psychological correlates of quality-of-life in polycystic ovary syndrome. Eur. J. Endocrinol. 2005, 153, 853–860. [Google Scholar] [CrossRef] [Green Version]
- AlHussain, F.; AlRuthia, Y.; Al-Mandeel, H.; Bellahwal, A.; Alharbi, F.; Almogbel, Y.; Awwad, O.; Dala’een, R.; Alharbi, F.A. Metformin Improves the Depression Symptoms of Women with Polycystic Ovary Syndrome in a Lifestyle Modification Program. Patient Prefer. Adherence 2020, 14, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Mi, J.; Jiang, Q.-M.; Xu, J.-M.; Tang, Y.-Y.; Tian, G.; Wang, B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 2014, 41, 650–656. [Google Scholar] [CrossRef]
- Erensoy, H.; Niafar, M.; Ghafarzadeh, S.; Aghamohammadzadeh, N.; Nader, N.D. A pilot trial of metformin for insulin resistance and mood disturbances in adolescent and adult women with polycystic ovary syndrome. Gynecol. Endocrinol. 2019, 35, 72–75. [Google Scholar] [CrossRef]
- Ng, T.P.; Feng, L.; Yap, K.B.; Lee, T.S.; Tan, C.H.; Winblad, B. Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimer’s Dis. 2014, 41, 61–68. [Google Scholar] [CrossRef]
- Cheng, C.; Lin, C.H.; Tsai, Y.W.; Tsai, C.J.; Chou, P.H.; Lan, T.H. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J. Gerontol. A Biol. Sci. Med. 2014, 69, 1299–1305. [Google Scholar] [CrossRef] [Green Version]
- Herath, P.M.; Cherbuin, N.; Eramudugolla, R.; Anstey, K.J. The Effect of Diabetes Medication on Cognitive Function: Evidence from the PATH Through Life Study. Bio. Med. Res. Int. 2016, 2016, 7208429. [Google Scholar] [CrossRef] [Green Version]
- Luchsinger, J.A.; Perez, T.; Chang, H.; Mehta, P.; Steffener, J.; Pradabhan, G.; Ichise, M.; Manly, J.; Devanand, D.; Bagiella, E. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J. Alzheimer’s Dis. 2016, 51, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Koenig, A.M.; Mechanic-Hamilton, D.; Xie, S.X.; Combs, M.F.; Cappola, A.R.; Xie, L.; Detre, J.A.; Wolk, D.A.; Arnold, S.E. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data from a Randomized Placebo-controlled Crossover Study. Alzheimer Dis. Assoc. Disord. 2017, 31, 107–113. [Google Scholar] [CrossRef]
- Ayoub, R.; Ruddy, R.M.; Cox, E.; Oyefiade, A.; Derkach, D.; Laughlin, S.; Ades-aron, B.; Shirzadi, Z.; Fieremans, E.; MacIntosh, B.J.; et al. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat. Med. 2020, 26, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Baptista, L.C.; Machado-Rodrigues, A.M.; Martins, R.A. Exercise but not metformin improves health-related quality of life and mood states in older adults with type 2 diabetes. Eur. J. Sport Sci. 2017, 17, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Kashani, L.; Omidvar, T.; Farazmand, B.; Modabbernia, A.; Ramzanzadeh, F.; Tehraninejad, E.S.; Ashrafi, M.; Tabrizi, M.; Akhondzadeh, S. Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression. Psychoneuroendocrinology 2013, 38, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.R.; Knowler, W.C.; Ma, Y.; Marrero, D.G.; Edelstein, S.L.; Walker, E.A.; Garfield, S.A.; Fisher, E.B.; Diabetes Prevention Program Research, G. Depression symptoms and antidepressant medicine use in Diabetes Prevention Program participants. Diabetes Care 2005, 28, 830–837. [Google Scholar] [PubMed] [Green Version]
- Abbatecola, A.M.; Lattanzio, F.; Molinari, A.M.; Cioffi, M.; Mansi, L.; Rambaldi, P.; DiCioccio, L.; Cacciapuoti, F.; Canonico, R.; Paolisso, G. Rosiglitazone and Cognitive Stability in Older Individuals with Type 2 Diabetes and Mild Cognitive Impairment. Diabetes Care 2010, 33, 1706–1711. [Google Scholar] [CrossRef] [Green Version]
- Wennberg, A.M.V.; Hagen, C.E.; Edward, S.K.; Roberts, R.O.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M. Association of antidiabetic medication use, cognitive decline, and risk of cognitive impairment in older people with type 2 diabetes: Results from the population-based Mayo Clinic Study of Aging. Int. J. Geriatr. Psychiatry 2018, 33, 1114–1120. [Google Scholar] [CrossRef] [Green Version]
- Aman, M.G.; Hollway, J.A.; Veenstra-VanderWeele, J.; Handen, B.L.; Sanders, K.B.; Chan, J.; Macklin, E.; Arnold, L.E.; Wong, T.; Newsom, C.; et al. Effects of Metformin on Spatial and Verbal Memory in Children with ASD and Overweight Associated with Atypical Antipsychotic Use. J. Child Adolesc. Psychopharmacol. 2018, 28, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Luchsinger, J.A.; Ma, Y.; Christophi, C.A.; Florez, H.; Golden, S.H.; Hazuda, H.; Crandall, J.; Venditti, E.; Watson, K.; Jeffries, S.; et al. Metformin, Lifestyle Intervention, and Cognition in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2017, 40, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Lehtisalo, J.; Lindström, J.; Ngandu, T.; Kivipelto, M.; Ahtiluoto, S.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Eriksson, J.G.; Uusitupa, M.; Tuomilehto, J.; et al. Association of long-term dietary fat intake, exercise, and weight with later cognitive function in the Finnish Diabetes Prevention Study. J. Nutr. Health Aging 2016, 20, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Barrett-Connor, E.; Aroda, V.R.; Mather, K.J.; Christophi, C.A.; Horton, E.S.; Pi-Sunyer, X.; Bray, G.A.; Labrie, F.; Golden, S.H. Testosterone and depressive symptoms among men in the Diabetes Prevention Program. Psychoneuroendocrinology 2016, 72, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.J.; Nelson, S.H.; Marinac, C.R.; Natarajan, L.; Parker, B.A.; Patterson, R.E. The effects of weight loss and metformin on cognition among breast cancer survivors: Evidence from the Reach for Health study. Psycho-Oncol. 2019, 28, 1640–1646. [Google Scholar] [CrossRef]
- Ryan, C.M.; Freed, M.I.; Rood, J.A.; Cobitz, A.R.; Waterhouse, B.R.; Strachan, M.W.J. Improving Metabolic Control Leads to Better Working Memory in Adults with Type 2 Diabetes. Diabetes Care 2006, 29, 345. [Google Scholar] [CrossRef] [Green Version]
- Sinyor, M.; Schaffer, A.; Levitt, A. The sequenced treatment alternatives to relieve depression (STAR*D) trial: A review. Can. J. Psychiatry 2010, 55, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Fava, M. Weight gain and antidepressants. J. Clin. Psychiatry 2000, 61, 37–41. [Google Scholar]
- Stotland, S.C.; Larocque, M. Early treatment response as a predictor of ongoing weight loss in obesity treatment. Br. J. Health Psychol. 2005, 10, 601–614. [Google Scholar] [CrossRef]
- Astrup, A.; Rössner, S. Lessons from obesity management programmes: Greater initial weight loss improves long-term maintenance. Obes. Rev. 2000, 1, 17–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, S.N.; Patel, S.K.; Xie, B.; Nelson, R.A.; Yee, L.D. Disrupting the Mood and Obesity Cycle: The Potential Role of Metformin. Obesities 2023, 3, 59-75. https://doi.org/10.3390/obesities3010006
Doan SN, Patel SK, Xie B, Nelson RA, Yee LD. Disrupting the Mood and Obesity Cycle: The Potential Role of Metformin. Obesities. 2023; 3(1):59-75. https://doi.org/10.3390/obesities3010006
Chicago/Turabian StyleDoan, Stacey N., Sunita K. Patel, Bin Xie, Rebecca A. Nelson, and Lisa D. Yee. 2023. "Disrupting the Mood and Obesity Cycle: The Potential Role of Metformin" Obesities 3, no. 1: 59-75. https://doi.org/10.3390/obesities3010006
APA StyleDoan, S. N., Patel, S. K., Xie, B., Nelson, R. A., & Yee, L. D. (2023). Disrupting the Mood and Obesity Cycle: The Potential Role of Metformin. Obesities, 3(1), 59-75. https://doi.org/10.3390/obesities3010006