Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Production
2.2.1. Visual Aspect
2.2.2. Film Thickness, Water Activity and Moisture Content
2.2.3. Solubility in Water
2.2.4. Water Vapor Permeability
2.2.5. Microstructure of the Film
2.3. Plums Coating
2.3.1. Appearance and Mass Loss
2.3.2. Respiratory Rate
2.3.3. pH and Soluble Solids
2.3.4. Moisture Content
2.3.5. Titratable Total Acidity
2.3.6. Anthocyanins Content
2.4. Statistical Analysis
3. Results and Discussions
3.1. Characterization of Films
3.2. Plums Coating
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soares, N.D.F.F.; da Silva, W.A.; dos Pires, A.C.S.; Camilloto, G.P.; Silva, P.S. Novos desenvolvimentos e aplicações em embalagens de alimentos. Ceres 2009, 56, 370–378. Available online: https://www.redalyc.org/articulo.oa?id=305226808003 (accessed on 18 May 2021).
- Farias, M.G.; Fakhouri, F.M.; de Carvalho, C.W.P.; Ascheri, J.L.R. Caracterização Físico-Química de Filmes Comestíveis de Amido Adicionado de Acerola (Malphigia Emarginata D.C.). Quím. Nova 2012, 35, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Fakhouri, F.M.; Fontes, L.C.B.; Gonçalves, P.V.D.M.; Milanez, C.R.; Steel, C.J.; Collares-Queiroz, F.P. Filmes e Coberturas Comestíveis Compostas à Base de Amidos Nativos e Gelatina Na Conservação e Aceitação Sensorial de Uvas Crimson. Ciênc. Tecnol. Aliment. 2007, 27, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural Characterization of Yam Starch Films. Carbohydr. Polym. 2002, 50, 379–386. [Google Scholar] [CrossRef]
- Chi, C.; Li, X.; Huang, S.; Chen, L.; Zhang, Y.; Li, L.; Miao, S. Basic Principles in Starch Multi-Scale Structuration to Mitigate Digestibility: A Review. Trends Food Sci. Technol. 2021, 109, 154–168. [Google Scholar] [CrossRef]
- Petersen, K.; Nielsen, P.V.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of Biobased Materials for Food Packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [Google Scholar] [CrossRef]
- Wilfer, P.B.; Giridaran, G.; Jeevahan, J.J.; Joseph, G.B.; Kumar, G.S.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today Proc. 2021, 44, 3903–3907. [Google Scholar] [CrossRef]
- Alrefai, R.; Alrefai, A.M.; Benyounis, K.; Stokes, J. A Comparative Study of the Properties of the Bio-Plastic Sheets Produced from Three Conventional and Unconventional Starch Sources. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-803581-8. [Google Scholar]
- Policegoudra, R.S.; Aradhya, S.M. Structure and Biochemical Properties of Starch from an Unconventional Source—Mango Ginger (Curcuma amada Roxb.) Rhizome. Food Hydrocoll. 2008, 22, 513–519. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Extraction and characterization of Arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym. 2018, 186, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, C.A.S.; Valencia, G.A.; Zapata, R.A.V.; Henao, A.C.A. Physicochemical Characterization of Arrowroot Starch (Maranta arundinacea Linn) and Glycerol/Arrowroot Starch Membranes. Int. J. Food Eng. 2014, 10, 727–735. [Google Scholar] [CrossRef]
- Moorthy, S.N. Physicochemical and Functional Properties of Tropical Tuber Starches: A Review. Starch Stärke 2002, 54, 559–592. [Google Scholar] [CrossRef]
- Romero-Bastida, C.A.; Bello-Pérez, L.A.; Velazquez, G.; Alvarez-Ramirez, J. Effect of the Addition Order and Amylose Content on Mechanical, Barrier and Structural Properties of Films Made with Starch and Montmorillonite. Carbohydr. Polym. 2015, 127, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, F.M.; Martelli, S.M.; Bertan, L.C.; Yamashita, F.; Mei, L.H.I.; Queiroz, F.P.C. Edible Films Made from Blends of Manioc Starch and Gelatin—Influence of Different Types of Plasticizer and Different Levels of Macromolecules on Their Properties. LWT 2012, 49, 149–154. [Google Scholar] [CrossRef]
- Li, M.; Liu, P.; Zou, W.; Yu, L.; Xie, F.; Pu, H.; Liu, H.; Chen, L. Extrusion Processing and Characterization of Edible Starch Films with Different Amylose Contents. J. Food Eng. 2011, 106, 95–101. [Google Scholar] [CrossRef]
- Villas-Boas, F.; Franco, C.M.L. Effect of Bacterial β-Amylase and Fungal α-Amylase on the Digestibility and Structural Characteristics of Potato and Arrowroot Starches. Food Hydrocoll. 2016, 52, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Guilbert, S.; Gontard, N.; Gorris, L.G.M. Prolongation of the Shelf-Life of Perishable Food Products Using Biodegradable Films and Coatings. LWT Food Sci. Technol. 1996, 29, 10–17. [Google Scholar] [CrossRef]
- Assis, O.B.G.; de Britto, D. Revisão: Coberturas Comestíveis Protetoras Em Frutas: Fundamentos e Aplicações. Braz. J. Food Technol. 2014, 17, 87–97. [Google Scholar] [CrossRef]
- Patel, C.; Panigrahi, J. Starch Glucose Coating-Induced Postharvest Shelf-Life Extension of Cucumber. Food Chem. 2019, 288, 208–214. [Google Scholar] [CrossRef]
- Hajji, S.; Younes, I.; Affes, S.; Boufi, S.; Nasri, M. Optimization of the Formulation of Chitosan Edible Coatings Supplemented with Carotenoproteins and Their Use for Extending Strawberries Postharvest Life. Food Hydrocoll. 2018, 83, 375–392. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Hubinger, M.D. Evaluation of Edible Films and Coatings Formulated with Cassava Starch, Glycerol, Carnauba Wax and Stearic Acid. Food Hydrocoll. 2014, 38, 20–27. [Google Scholar] [CrossRef]
- de Oliveira Alves Sena, E.; da Silva, P.S.O.; de Aragão Batista, M.C.; Alonzo Sargent, S.; de Oliveira, L.F.G., Jr.; Almeida Castro Pagani, A.; Gutierrez Carnelossi, M.A. Calcium Application via Hydrocooling and Edible Coating for the Conservation and Quality of Cashew Apples. Sci. Hortic. 2019, 256, 108531. [Google Scholar] [CrossRef]
- Roussos, P.A.; Efstathios, N.; Intidhar, B.; Denaxa, N.-K.; Tsafouros, A. Plum (Prunus domestica L. and P. salicina Lindl.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 639–666. ISBN 978-0-12-408117-8. [Google Scholar]
- Steffens, C.A.; Brackmann, A.; Pinto, J.A.V.; Eisermann, A.C. Taxa Respiratória de Frutas de Clima Temperado. Pesqui. Agropecu. Bras. 2007, 42, 313–321. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Martínez, C.; Centro Internacional de Agricultura Tropical. Evaluación de La Calidad Culinaria y Molinera Del Arroz; Serie 04SR-07.01; Centro Internacional de Agricultura Tropical (CIAT): Cali-Palmira, Columbia, 1989. [Google Scholar]
- Gontard, N.; Guilbert, S.; Cuq, J.-L. Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties Using Response Surface Methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Water Vapor Transmission of Materials. Method E96e80. In Annual Book of American Standard Testing Methods; American Society for Testing and Materials: West Conshohocken, PA, USA, 1989. [Google Scholar]
- Cunniff, P.; Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Washington, DC, USA, 1995; ISBN 978-0-935584-54-7. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of Starch Type on the Physico-Chemical Properties of Edible Films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Bezerra, C.C.D.O.N.; Albiero, B.R.; Oldoni, F.C.A.; Miranda, M.; Egea, M.B.; de Azeredo, H.M.C.; Ferreira, M.D. New Approach in the Development of Edible Films: The Use of Carnauba Wax Micro- or Nanoemulsions in Arrowroot Starch-Based Films. Food Packag. Shelf Life 2020, 26, 100589. [Google Scholar] [CrossRef]
- Sobral, P.J.D.A. Influência Da Espessura de Biofilmes Feitos à Base de Proteínas Miofibrilares Sobre Suas Propriedades Funcionais. Pesqui. Agropecu. Bras. 2000, 35, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- McHugh, T.H.; Huxsoll, C.C.; Krochta, J.M. Permeability Properties of Fruit Puree Edible Films. J. Food Sci. 1996, 61, 88–91. [Google Scholar] [CrossRef]
- Colussi, R.; Pinto, V.Z.; El Halal, S.L.M.; Biduski, B.; Prietto, L.; Castilhos, D.D.; Zavareze, E.D.R.; Dias, A.R.G. Acetylated Rice Starches Films with Different Levels of Amylose: Mechanical, Water Vapor Barrier, Thermal, and Biodegradability Properties. Food Chem. 2017, 221, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Sarantopoulos, C.I.; de Oliveira, L.M.; Canavesi, É. Requisitos de Conservação de Alimentos em Embalagens Flexíveis; CETEA/ITAL: Campinas, Brazil, 2001; ISBN 85-7029-037-3.
- Handa, A.; Gennadios, A.; Hanna, M.A.; Weller, C.L.; Kuroda, N. Physical and Molecular Properties of Egg-White Lipid Films. J. Food Sci. 1999, 64, 860–864. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effects of Carbohydrate/Protein Ratio on the Microstructure and the Barrier and Sorption Properties of Wheat Starch-Whey Protein Blend Edible Films: Carbohydrate/Protein Ratio and Edible Films. J. Sci. Food Agric. 2017, 97, 858–867. [Google Scholar] [CrossRef]
- Sartori, T.; Menegalli, F.C. Development and Characterization of Unripe Banana Starch Films Incorporated with Solid Lipid Microparticles Containing Ascorbic Acid. Food Hydrocoll. 2016, 55, 210–219. [Google Scholar] [CrossRef]
- Park, H.J.; Chinnan, M.S. Gas and Water Vapor Barrier Properties of Edible Films from Protein and Cellulosic Materials. J. Food Eng. 1995, 25, 497–507. [Google Scholar] [CrossRef]
- Narváez-Gómez, G.; Figueroa-Flórez, J.; Salcedo-Mendoza, J.; Pérez-Cervera, C.; Andrade-Pizarro, R. Development and Characterization of Dual-Modified Yam (Dioscorea rotundata) Starch-Based Films. Heliyon 2021, 7, e06644. [Google Scholar] [CrossRef]
- Finch, C.A. Modified Starches: Properties and Uses. Edited by O. B.; Wurzburg, CRC Press, Boca Raton, Florida, 1986. pp. vi + 277. ISBN 0-8493-5964-3. Br. Polym. J. 1989, 21, 87–88. [Google Scholar] [CrossRef]
- Saberi, B.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Characterization of Pea Starch-Guar Gum Biocomposite Edible Films Enriched by Natural Antimicrobial Agents for Active Food Packaging. Food Bioprod. Process. 2017, 105, 51–63. [Google Scholar] [CrossRef] [Green Version]
- García, M.A.; Martino, M.N.; Zaritzky, N.E. Plasticized Starch-Based Coatings To Improve Strawberry (Fragaria × Ananassa) Quality and Stability. J. Agric. Food Chem. 1998, 46, 3758–3767. [Google Scholar] [CrossRef]
- Wills, R.B.H.; Graham, D.; McGlasson, B.; Joyce, D. Postharvest: An Introduction to the Physiology & Handling of Fruit, Vegetables & Ornamentals; UNSW Press: Randwick, Australia, 1998; ISBN 978-0-85199-264-8. [Google Scholar]
- Drake, S.R.; Elfving, D.C. Short-term controlled atmosphere storage for storage-life extension of white-fleshed peaches and nectarines. J. Food Qual. 2003, 26, 135–147. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of Alginate Edible Coating on Preserving Fruit Quality in Four Plum Cultivars during Postharvest Storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Chitarra, M.I.F.; Chitarra, A.B. Pós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio, 2nd ed.; Editora UFLA: Lavras, Brazil, 2005. [Google Scholar]
- Cordenunsi, B.R.; Genovese, M.I.; do Nascimento, J.R.O.; Aymoto Hassimotto, N.M.; dos Santos, R.J.; Lajolo, F.M. Effects of Temperature on the Chemical Composition and Antioxidant Activity of Three Strawberry Cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
Films | Thickness (mm) | AW (decimal) | Moisture Content (%) | Solubility in Water (%) | Water Vapor Permeability (g mm/m2 day kPa) |
---|---|---|---|---|---|
1% | 0.029 ± 0.01 b * | 0.594 ± 0.024 a | 3.22 ± 0.25 b | 22.45 ± 1.21 a | 2.20 ± 0.06 bc |
2% | 0.059 ± 0.01 ab | 0.500 ± 0.008 cb | 6.44 ± 0.83 ab | 15.30 ± 1.74 b | 1.70 ± 1.15 c |
3% | 0.053 ± 0.01 ab | 0.452 ± 0.016 c | 7.27 ± 0.30 a | 14.19 ± 0.77 b | 1.97 ± 0.44 bc |
4% | 0.081 ± 0.01 a | 0.457 ± 0.026 cb | 5.42 ± 1.53 ab | 16.11 ± 0.73 b | 4.08 ± 0.63 a |
5% | 0.101 ± 0.14 a | 0.511 ± 0.028 b | 7.95 ± 2.19 a | 13.89 ± 0.65 b | 3.68 ± 0.17 ba |
Treatments | Storage (Days) | |||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 35 | |
0%—25 °C | 0.00 ± 0.00 aB * | 5.43 ± 0.34 aA | - | - | - | - |
2%—25 °C | 0.00 ± 0.00 aB | 5.40 ± 0.85 aA | - | - | - | - |
4%—25 °C | 0.00 ± 0.00 aB | 2.77 ± 0.31 bA | - | - | - | - |
0%—5 °C | 0.00 ± 0.00 aD | 0.00 ± 0.08 cD | 1.74 ± 0.23 aC | 2.62 ± 0.31 aC | 8.50 ± 0.82 aB | 10.63 ± 0.27 aA |
2%—5 °C | 0.00 ± 0.00 aC | 0.02 ± 0.03 cC | 2.38 ± 0.17 aBC | 3.57 ± 0.11 aB | 4.90 ± 0.30 aBA | 7.18 ± 1.53 aA |
4%—5 °C | 0.00 ± 0.00 aB | 0.55 ± 0.59 cB | 2.37 ± 0.32 aB | 3.33 ± 0.51 aB | 7.78 ± 2.51 aA | 8.37 ± 1.29 aA |
Treatments | Storage (Days) | |||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 35 | |
0%—25 °C | 247.84 ± 14.02 aA * | 252.3 ±5.09 aA | - | - | - | - |
2%—25 °C | 247.84 ± 14.02 aA | 235.60 ± 48.05 bacA | - | - | - | - |
4%—25 °C | 247.84 ± 14.02 aA | 239.18 ± 26.95 baA | - | - | - | - |
0%—5 °C | 247.84 ± 14.02 aA | 122.25 ± 4.75 cC | 148.11 ± 2.99 bCB | 152.96 ± 7.30 bCB | 178.32 ± 8.62 aB | 145.17 ± 9.83 aCB |
2%—5 °C | 247.84 ± 14.02 aA | 223.53 ± 25.20 bacBA | 170.90 ± 4.40 baBC | 184.28 ± 0.20 baBC | 187.29 ± 3.24 aBC | 157.83 ± 10.42 aC |
4%—5 °C | 247.84 ± 14.02 aA | 127.37 ± 6.27 bcD | 180.08 ± 6.59 aCB | 207.47 ± 6.49 aB | 175.24 ± 12.53 aCB | 166.84 ± 1.13 aC |
Treatments | Storage (Days) | |||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 35 | |
0%—25 °C | 2.45 ± 0.16 aB * | 3.47 ± 0.25 aA | - | - | - | - |
2%—25 °C | 2.45 ± 0.16 aB | 3.67 ± 0.37 aA | - | - | - | - |
4%—25 °C | 2.45 ± 0.16 aB | 3.08 ± 0.28 aA | - | - | - | - |
0%—5 °C | 2.45 ± 0.16 aA | 3.12 ± 0.04 aA | 2.15 ± 0.24 aA | 2.00 ± 0.16 aA | 2.65 ± 0.79 bA | 2.88 ± 0.29 aA |
2%—5 °C | 2.45 ± 0.16 aC | 3.19 ± 0.21 aBAC | 2.69 ± 0.24 aBC | 2.88 ± 0.27 aBC | 3.42 ± 0.08 baBA | 3.87 ± 0.62 aA |
4%—5 °C | 2.45 ± 0.16 aC | 3.17 ± 0.16 aBAC | 2.15 ± 0.37 aC | 2.55 ± 1.07 aBC | 3.85 ± 0.44 aBA | 3.96 ± 0.10 aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, G.F.; Leme, B.d.O.; Santos, G.R.S.d.; Silva, J.V.d.; Nascimento, P.B.; Soares, C.T.; Fakhouri, F.M.; de Oliveira, R.A. Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging. Polysaccharides 2021, 2, 373-386. https://doi.org/10.3390/polysaccharides2020024
Nogueira GF, Leme BdO, Santos GRSd, Silva JVd, Nascimento PB, Soares CT, Fakhouri FM, de Oliveira RA. Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging. Polysaccharides. 2021; 2(2):373-386. https://doi.org/10.3390/polysaccharides2020024
Chicago/Turabian StyleNogueira, Gislaine Ferreira, Bianca de Oliveira Leme, Gabriela Ragazzi Santana dos Santos, Juliana Viegas da Silva, Patrícia Barbosa Nascimento, Cyntia Trevisan Soares, Farayde Matta Fakhouri, and Rafael Augustus de Oliveira. 2021. "Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging" Polysaccharides 2, no. 2: 373-386. https://doi.org/10.3390/polysaccharides2020024
APA StyleNogueira, G. F., Leme, B. d. O., Santos, G. R. S. d., Silva, J. V. d., Nascimento, P. B., Soares, C. T., Fakhouri, F. M., & de Oliveira, R. A. (2021). Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging. Polysaccharides, 2(2), 373-386. https://doi.org/10.3390/polysaccharides2020024