Ecofriendly Removal of Aluminum and Cadmium Sulfate Pollution by Adsorption on Hexanoyl-Modified Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals used for the Modification of Chitosan
2.1.2. Heavy Metal Salts
2.1.3. ICP-OES Standard Solutions
2.1.4. Ultrapure Water
2.2. Synthesis of Hexanoyl-Modified Chitosan (H-Chitosan)
2.3. Adsorption Experiments with Heavy Metal Salts
2.4. Characterization and Analysis
2.4.1. Fourier-Transform Infrared Spectroscopy (FTIR)
2.4.2. Particle Charge Detection (PCD) and Zetapotential vs. pH
2.4.3. Thermogravimetric Analysis (TGA)
2.4.4. Nitrogen Sorption Experiments
2.4.5. Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (SEM-EDX)
2.4.6. Elemental Analysis
2.4.7. Nuclear Magnetic Resonance (NMR)
2.4.8. Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)
2.4.9. pH-Dependent Solubility Measurements
2.5. Calculation of the N-Acylation Degree
2.6. Theoretical Model
3. Results and Discussion
3.1. Characterization of H-Chitosan
3.2. Adsorption of Metal Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fergusson, J.E. The Heavy Elements: Chemistry, Environmental Impact and Health Effects; Pergamon Press: Oxford, UK, 1990; ISBN 978-0-08-040275-8. [Google Scholar]
- Borchert, K.B.L.; Steinbach, C.; Schwarz, S.; Schwarz, D. A comparative study on the flocculation of silica and China clay with chitosan and synthetic polyelectrolytes. Mar. Drugs 2021, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Weißpflog, J.; Boldt, R.; Kohn, B.; Scheler, U.; Jehnichen, D.; Tyrpekl, V.; Schwarz, S. Investigation of mechanisms for simultaneous adsorption of iron and sulfate ions onto chitosan with formation of orthorhombic structures. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124575. [Google Scholar] [CrossRef]
- Weißpflog, J.; Gündel, A.; Vehlow, D.; Steinbach, C.; Müller, M.; Boldt, R.; Schwarz, S.; Schwarz, D. Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan. Molecules 2020, 25, 2482. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef] [PubMed]
- Borchert, K.B.L.; Boughanmi, R.; Reis, B.; Zimmermann, P.; Steinbach, C.; Graichen, P.; Svirepa, A.; Schwarz, J.; Boldt, R.; Schwarz, S.; et al. Removal of lead, cadmium, and aluminum sulfate from simulated and real water with native and oxidized starches. Polysaccharides 2021, 2, 429–453. [Google Scholar] [CrossRef]
- Choksi, P.M.; Joshi, V.Y. Adsorption kinetic study for the removal of nickel (II) and aluminum (III) from an aqueous solution by natural adsorbents. Desalination 2007, 208, 216–231. [Google Scholar] [CrossRef]
- Soto, D.; Urdaneta, J.; Pernía, K.; León, O.; Muñoz-Bonilla, A.; Fernandez-García, M. Removal of heavy metal ions in water by starch esters. Starch-Stärke 2016, 68, 37–46. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Ghiorghita, C.-A.; Borchert, K.B.L.; Vasiliu, A.-L.; Zaharia, M.-M.; Schwarz, D.; Mihai, M. Porous thiourea-grafted-chitosan hydrogels: Synthesis and sorption of toxic metal ions from contaminated waters. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125504. [Google Scholar] [CrossRef]
- Mende, M.; Schwarz, D.; Steinbach, C.; Boldt, R.; Schwarz, S. Simultaneous adsorption of heavy metal ions and anions from aqueous solutions on chitosan—Investigated by spectrophotometry and SEM-EDX analysis. Colloids Surf. A Physicochem. Eng. Asp. 2016, 510, 275–282. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef] [PubMed]
- Vakili, M.; Deng, S.; Li, T.; Wang, W.; Wang, W.; Yu, G. Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chem. Eng. J. 2018, 347, 782–790. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- Xu, C.; Pan, H.; Jiang, H.; Tang, G.; Chen, W. Biocompatibility evaluation of N,O-hexanoyl chitosan as a biodegradable hydrophobic polycation for controlled drug release. J. Mater. Sci. Mater. Med. 2008, 19, 2525–2532. [Google Scholar] [CrossRef]
- Xu, J.; McCarthy, S.P.; Gross, R.A.; Kaplan, D.L. Chitosan film acylation and effects on biodegradability. Macromolecules 1996, 29, 3436–3440. [Google Scholar] [CrossRef]
- Shuhaimi-Othman, M.; Nadzifah, Y.; Nur-Amalina, R.; Umirah, N.S. Deriving freshwater quality criteria for copper, cadmium, aluminum and manganese for protection of aquatic life in Malaysia. Chemosphere 2013, 90, 2631–2636. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef]
- Wilson, R.W. 2—Aluminum. In Fish Physiology; Wood, C.M., Farrell, A.P., Brauner, C.J., Eds.; Homeostasis and Toxicology of Non-Essential Metals; Academic Press: Cambridge, MA, USA, 2011; Volume 31, pp. 67–123. [Google Scholar]
- Gensemer, R.W.; Playle, R.C. The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol. 1999, 29, 315–450. [Google Scholar] [CrossRef]
- Rosseland, B.O.; Eldhuset, T.D.; Staurnes, M. Environmental effects of aluminium. Environ. Geochem. Health 1990, 12, 17–27. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Gashkina, N.A. Biogeochemistry of cadmium: Anthropogenic dispersion, bioaccumulation, and ecotoxicity. Geochem. Int. 2018, 56, 798–811. [Google Scholar] [CrossRef]
- Reis, B.; Gerlach, N.; Steinbach, C.; Carrasco, K.H.; Oelmann, M.; Schwarz, S.; Müller, M.; Schwarz, D. A complementary and revised view on the N-Acylation of chitosan with hexanoyl chloride. Mar. Drugs 2021, 19, 385. [Google Scholar] [CrossRef] [PubMed]
- Weißpflog, J.; Vehlow, D.; Müller, M.; Kohn, B.; Scheler, U.; Boye, S.; Schwarz, S. Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state—Insights by various complimentary methods. Int. J. Biol. Macromol. 2021, 171, 242–261. [Google Scholar] [CrossRef]
- Moore, G.K.; Roberts, G.A.F. Determination of the degree of N-Acetylation of chitosan. Int. J. Biol. Macromol. 1980, 2, 115–116. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Dubinin, M.; Radushkevich, L. The equation of the characteristic curve of activated charcoal. Proc. USSR Acad. Sci. 1947, 55, 331. [Google Scholar]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Zhou, X. Correction to the calculation of polanyi potential from Dubinnin-Rudushkevich equation. J. Hazard. Mater. 2020, 384, 121101. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Kamga, F.T. Modeling adsorption mechanism of paraquat onto ayous (triplochiton scleroxylon) wood sawdust. Appl. Water Sci. 2018, 9, 1. [Google Scholar] [CrossRef]
- Liu, Y. Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data 2009, 54, 1981–1985. [Google Scholar] [CrossRef]
- Quiñones, J.P.; Peniche, H.; Peniche, C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers 2018, 10, 235. [Google Scholar] [CrossRef]
- Le Tien, C.; Lacroix, M.; Ispas-Szabo, P.; Mateescu, M.-A. N-Acylated Chitosan: Hydrophobic matrices for controlled drug release. J. Control. Release 2003, 93, 1–13. [Google Scholar] [CrossRef]
- Peesan, M.; Supaphol, P.; Rujiravanit, R. Preparation and characterization of hexanoyl chitosan/polylactide blend films. Carbohydr. Polym. 2005, 3, 343–350. [Google Scholar] [CrossRef]
- Ren, D.; Yi, H.; Wang, W.; Ma, X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-Acetylation. Carbohydr. Res. 2005, 340, 2403–2410. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications-detail-redirect/9789241549950 (accessed on 16 September 2021).
- Martin, R.B. Fe3+ and Al3+ hydrolysis equilibria. Cooperativity in Al3+ hydrolysis reactions. J. Inorg. Biochem. 1991, 44, 141–147. [Google Scholar] [CrossRef]
- Pour, P.G.; Takassi, M.A.; Hamoule, T. Removal of Aluminum from Water and Industrial Waste Water. Orient. J. Chem 2014, 30, 1365–1369. [Google Scholar] [CrossRef]
- Lobo-Recio, M.Á.; Lapolli, F.R.; Belli, T.J.; Folzke, C.T.; Tarpani, R.R.Z. Study of the removal of residual aluminum through the biopolymers carboxymethylcellulose, chitin, and chitosan. Desalination Water Treat. 2013, 51, 1735–1743. [Google Scholar] [CrossRef]
- Badawi, M.; Negm, N.; Abou Kana, M.; Hefni, H.; Abdel Moneem, M. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism. Int. J. Biol. Macromol. 2017, 99, 465–476. [Google Scholar] [CrossRef]
- Samadi, N.; Hasanzadeh, R.; Rasad, M. Adsorption isotherms, kinetic, and desorption studies on removal of toxic metal ions from aqueous solutions by polymeric adsorbent. J. Appl. Polym. Sci. 2014, 593, 1–13. [Google Scholar] [CrossRef]
- Rao, K.S.; Anand, S.; Venkateswarlu, P. Adsorption of Cadmium from Aqueous Solution by Ficus religiosa Leaf Powder and Characterization of Loaded Biosorbent. Clean Soil Air Water 2011, 39, 384–391. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef]
- Li, W.; Liao, X.; Wang, L.; Huang, Z. Adsorption of cadmium and lead in wastewater by four kinds of biomass xanthates. Water Sci. Technol. 2019, 79, 1222–1230. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Wu, X.; Yu, J.-G.; Jiang, X.-Y.; Wu, Z.-L.; Hao, X. Soluble starch functionalized graphene oxide as an efficient adsorbent for aqueous removal of Cd(II): The adsorption thermodynamic, kinetics and isotherms. J Sol-Gel Sci Technol 2017, 82, 440–449. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhong, B.H.; Fang, W.M. Adsorption characterization of lead(II) and cadmium(II) on crosslinked carboxymethyl starch. J. Appl. Polym. Sci. 2011, 180, 5010–5020. [Google Scholar] [CrossRef]
- Dzul Erosa, M.S.; Saucedo Medina, T.I.; Navarro Mendoza, R.; Avila Rodriguez, M.; Guibal, E. Cadmium sorption on chitosan sorbents: Kinetic and equilibrium studies. Hydrometallurgy 2001, 61, 157–167. [Google Scholar] [CrossRef]
- Vilela, P.; Matias, C.; Dalalibera, A.; Becegato, V.; Paulino, A. Polyacrylic Acid-Based And Chitosan-Based Hydrogels For Adsorption Of Cadmium: Equilibrium Isotherm, Kinetic And Thermodynamic Studies. J. Environ. Chem. Eng. 2019, 7, 103327. [Google Scholar] [CrossRef]
- Sharififard, H.; Shahraki, Z.; Rezvanpanah, E.; Rad, S. A Novel Natural Chitosan/Activated Carbon/Iron Bio-Nanocomposite: Sonochemical Synthesis, Characterization, And Application For Cadmium Removal In Batch And Continuous Adsorption Process. Bioresour. Technol. 2018, 270, 562–569. [Google Scholar] [CrossRef]
Chitosan | Hexanoyl Chloride Added in mL | Hexanoyl Chloride Added in mmol | (w/w) Ratio: Chitosan/Hexanoyl Chloride | Sample Code |
---|---|---|---|---|
Ch90/60/A1 (1.3 g) | 2.3 | 16.5 | 1:2 | H-Ch60-2 |
9.2 | 65.8 | 1:8 | H-Ch60-8 | |
13.8 | 98.7 | 1:12 | H-Ch60-12 | |
Ch90/200/A1 (1.3 g) | 2.3 | 16.5 | 1:2 | H-Ch200-2 |
9.2 | 65.8 | 1:8 | H-Ch200-8 | |
13.8 | 98.7 | 1:12 | H-Ch200-12 |
Sample | Weight Ratio Chitosan: Hexanoyl Chloride | DS % NMR | DS % FTIR |
---|---|---|---|
H-Ch60-2 | 1:2 | 1.8% | 1.7% |
H-Ch60-8 | 1:8 | 10.1% | 11.6% |
H-Ch60-12 | 1:12 | 51.1% | - |
H-Ch200-2 | 1:2 | 1.7% | 2.5% |
H-Ch200-8 | 1:8 | 11.4% | 15.7% |
H-Ch200-12 | 1:12 | 28.4% | - |
Ion | Model | Qm mmol/g | K * | βDR 10−9 mol2/J2 | n | Eads,DR kJ/mol | ΔG° kJ/mol | R2 (COD) |
---|---|---|---|---|---|---|---|---|
Al3+ | Langmuir | 2.08 ± 0.20 | 0.65 ± 0.20 | -- | -- | -- | –6.07 | 0.799 |
Sips | 1.76 ± 0.12 | 1.02 ± 0.34 | -- | 2.18 ± 0.79 | -- | -- | 0.850 | |
Dubinin-Radushkevich | 3.59 ± 0.64 | -- | 5.17 ± 0.95 | -- | 9.84 ± 0.91 | -- | 0.734 | |
SO42− | Langmuir | 2.78 ± 0.15 | 0.58 ± 0.11 | -- | -- | -- | –5.97 | 0.926 |
Sips | 2.60 ± 0.21 | 0.63 ± 0.12 | -- | 1.22 ± 0.28 | -- | -- | 0.929 | |
Dubinin-Radushkevich | 4.52 ± 0.47 | -- | 5.05 ± 0.6 | -- | 9.95 ± 0.59 | -- | 0.884 |
Ion | Model | Qm mmol/g | K * | βDR 10−9 mol2/J2 | n | Eads,DR kJ/mol | ΔG° kJ/mol | R2 (COD) |
---|---|---|---|---|---|---|---|---|
Al3+ | Langmuir | 2.48 ± 0.24 | 0.28 ± 0.06 | -- | -- | -- | −5.28 | 0.961 |
Sips | 1.74 ± 0.05 | 0.21 ± 0.03 | -- | 2.41 ± 0.26 | -- | -- | 0.991 | |
Dubinin-Radushkevich | 5.21 ± 0.82 | -- | 7.61 ± 0.88 | -- | 8.11 ± 0.47 | -- | 0.938 | |
SO42− | Langmuir | 3.17 ± 0.32 | 0.21 ± 0.04 | -- | -- | -- | −5.01 | 0.971 |
Sips | 2.06 ± 0.07 | 0.20 ± 0.02 | -- | 2.10 ± 0.19 | -- | -- | 0.993 | |
Dubinin-Radushkevich | 6.86 ± 0.98 | -- | 8.54 ± 0.81 | -- | 7.65 ± 0.36 | -- | 0.957 |
Sample | C in Atom% | N in Atom% | O in Atom% | S in Atom% | Al in Atom% | Cd in Atom% | Total in Atom% |
---|---|---|---|---|---|---|---|
H-Ch60-2 | 49.5 | 15.4 | 35.1 | 0 | 0 | 0 | 100 |
H-Ch60-2 Al2(SO4)3 | 39.5 | 11.6 | 44.9 | 3.1 | 0.9 | 0.0 | 100 * |
H-Ch60-2 CdSO4 | 44.3 | 7.6 | 40.0 | 3.5 | 0 | 4.6 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, B.; Borchert, K.B.L.; Kafetzi, M.; Müller, M.; Carrasco, K.H.; Gerlach, N.; Steinbach, C.; Schwarz, S.; Boldt, R.; Pispas, S.; et al. Ecofriendly Removal of Aluminum and Cadmium Sulfate Pollution by Adsorption on Hexanoyl-Modified Chitosan. Polysaccharides 2022, 3, 589-608. https://doi.org/10.3390/polysaccharides3030035
Reis B, Borchert KBL, Kafetzi M, Müller M, Carrasco KH, Gerlach N, Steinbach C, Schwarz S, Boldt R, Pispas S, et al. Ecofriendly Removal of Aluminum and Cadmium Sulfate Pollution by Adsorption on Hexanoyl-Modified Chitosan. Polysaccharides. 2022; 3(3):589-608. https://doi.org/10.3390/polysaccharides3030035
Chicago/Turabian StyleReis, Berthold, Konstantin B. L. Borchert, Martha Kafetzi, Martin Müller, Karina Haro Carrasco, Niklas Gerlach, Christine Steinbach, Simona Schwarz, Regine Boldt, Stergios Pispas, and et al. 2022. "Ecofriendly Removal of Aluminum and Cadmium Sulfate Pollution by Adsorption on Hexanoyl-Modified Chitosan" Polysaccharides 3, no. 3: 589-608. https://doi.org/10.3390/polysaccharides3030035
APA StyleReis, B., Borchert, K. B. L., Kafetzi, M., Müller, M., Carrasco, K. H., Gerlach, N., Steinbach, C., Schwarz, S., Boldt, R., Pispas, S., & Schwarz, D. (2022). Ecofriendly Removal of Aluminum and Cadmium Sulfate Pollution by Adsorption on Hexanoyl-Modified Chitosan. Polysaccharides, 3(3), 589-608. https://doi.org/10.3390/polysaccharides3030035