Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
- The objective of this work was to study the formation of bubbles in ITER-grade tungsten to understand the factors that cause it and influence their formation, as they could potentially have an effect on the performance of divertor PFCs in fusion reactors.
- It was shown that at 700 °C base temperature, an exposure to transient heat loads of up to to 0.6 GWm−2 causes only nanometer-sized bubble on the surface of the material. Once Pabs is increased, the higher surface temperature allows bubbles to migrate and coalesce, causing the formation of larger bubbles deeper into the surface.
- The effect of a higher plasma fluence was even larger. When plasma fluence was increased from 3.6 × 1025 m−2 to 5.9 × 1025 m−2 the bubble density and size grew, forming bubbles of up to 1–2 µm in diameter. Bubbles occupied a 0.9% of the FIB cross-section area in sample B and 2% of the area for sample D.
- When exposing the samples to deuterium-only plasma, with no helium, no bubbles were formed. This means, thus, that bubble formation is caused exclusively by exposure to helium plasma. Furthermore, melting and cracking behavior were significantly worse in the samples exposed to combined D/He(6%) than in the one exposed to deuterium-only plasma. This evidences the loss in heat dissipation on the surface of the material and the degradation of material properties.
- Alloys and other advanced concepts for plasma-facing materials for the divertor in future fusion reactors are being developed to solve some issues they are expected to face. Materials that are more resistant to neutron irradiation, cracking, recrystallization, oxidation in case of a loss-of-coolant accident (LOCA) and the improvement of the joint between PFM and cooling tube are being developed [37,38,39,40,41]. As of yet, no material has been developed specifically to solve the issue of bubble formation.
- The effect that bubble formation could potentially have on the performance and lifetime of a fusion reactor such as ITER remains. To assess this issue, its influence on the thermal conductivity, hardness, erosion and deuterium retention of the material should be studied. Additionally, the bubble formation behavior of tungsten alloys and new PFM concepts should be studied.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirai, T.; Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; et al. ITER tungsten divertor design development and qualification program. Fusion Eng. Des. 2013, 88, 1798–1801. [Google Scholar] [CrossRef]
- Pitts, R.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Kukushkin, A.; Lisgo, S.; Loarte, A.; Merola, M.; Mitteau, R.; et al. Physics basis and design of the ITER plasma-facing components. J. Nucl. Mater. 2011, 415, S957–S964. [Google Scholar] [CrossRef]
- De Temmerman, G.; Hirai, T.; Pitts, R.A. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets. Plasma Phys. Control. Fusion 2018, 60, 44018. [Google Scholar] [CrossRef]
- Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J.; Loewenhoff, T.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M. Baseline high heat flux and plasma facing materials for fusion. Nucl. Fusion 2017, 57, 92006. [Google Scholar] [CrossRef] [Green Version]
- Janeschitz, G. Plasma–wall interaction issues in ITER. J. Nucl. Mater. 2001, 290–293, 1–11. [Google Scholar] [CrossRef]
- Merola, M.; Escourbiac, F.; Raffray, A.R.; Chappuis, P.; Hirai, T.; Gicquel, S. Engineering challenges and development of the ITER Blanket System and Divertor. Fusion Eng. Des. 2015, 96–97, 34–41. [Google Scholar] [CrossRef]
- Philipps, V. Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater. 2011, 415, S2–S9. [Google Scholar] [CrossRef]
- Linke, J.; Du, J.; Loewenhoff, T.; Pintsuk, G.; Spilker, B.; Steudel, I.; Wirtz, M. Challenges for plasma-facing components in nuclear fusion. Matter Radiat. Extrem. 2019, 4, 056201. [Google Scholar] [CrossRef] [Green Version]
- Merola, M.; Loesser, D.; Martin, A.; Chappuis, P.; Mitteau, R.; Komarov, V.; Pitts, R.; Gicquel, S.; Barabash, V.; Giancarli, L.; et al. ITER plasma-facing components. Fusion Eng. Des. 2010, 85, 2312–2322. [Google Scholar] [CrossRef]
- Pütterich, T.; Neu, R.; Dux, R.; Whiteford, A.; O’Mullane, M.; Summers, H.; the ASDEX Upgrade Team. Calculation and experimental test of the cooling factor of tungsten. Nucl. Fusion 2010, 50, 25012. [Google Scholar] [CrossRef] [Green Version]
- Loewenhoff, T.; Antusch, S.; Pintsuk, G.; Rieth, M.; Wirtz, M. High pulse number thermal shock testing of tungsten alloys produced by powder injection molding. Nucl. Mater. Energy 2019, 20, 100680. [Google Scholar] [CrossRef]
- Wirtz, M.; Linke, J.; Loewenhoff, T.; Pintsuk, G.; Uytdenhouwen, I. Thermal shock tests to qualify different tungsten grades as plasma facing material. Phys. Scr. 2016, T167, 14015. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, M.; Cempura, G.; Linke, J.; Pintsuk, G.; Uytdenhouwen, I. Thermal shock response of deformed and recrystallised tungsten. Fusion Eng. Des. 2013, 88, 1768–1772. [Google Scholar] [CrossRef]
- Pintsuk, G.; Loewenhoff, T. Impact of microstructure on the plasma performance of industrial and high-end tungsten grades. J. Nucl. Mater. 2013, 438, S945–S948. [Google Scholar] [CrossRef]
- Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.; Federici, G.; Merola, M.; Linke, J.; Zhitlukhin, A.; Podkovyrov, V.; et al. ITER transient consequences for material damage: Modelling versus experiments. Phys. Scr. 2007, T128, 229–233. [Google Scholar] [CrossRef]
- Klimov, N.; Podkovyrov, V.; Zhitlukhin, A.; Kovalenko, D.; Linke, J.; Pintsuk, G.; Landman, I.; Pestchanyi, S.; Bazylev, B.; Janeschitz, G.; et al. Experimental study of PFCs erosion and eroded material deposition under ITER-like transient loads at the plasma gun facility QSPA-T. J. Nucl. Mater. 2011, 415, S59–S64. [Google Scholar] [CrossRef]
- Morgan, T.W.; Balden, M.; Schwarz-Selinger, T.; Li, Y.; Loewenhoff, T.H.; Wirtz, M.; Brezinsek, S.; De Temmerman, G. ITER monoblock performance under lifetime loading conditions in Magnum-PSI. Phys. Scr. 2020, T171, 14065. [Google Scholar] [CrossRef]
- Morgan, T.; Li, Y.; Balden, M.; Brezinsek, S.; De Temmerman, G. Combined high fluence and high cycle number transient loading of ITER-like monoblocks in Magnum-PSI. Nucl. Fusion 2021, 61, 116045. [Google Scholar] [CrossRef]
- Gago, M.; Kreter, A.; Unterberg, B.; Wirtz, M. Synergistic effects of particle and transient heat loads on ITER-grade tungsten. Phys. Scr. 2020, T171, 14007. [Google Scholar] [CrossRef]
- Gago, M.; Kreter, A.; Unterberg, B.; Wirtz, M. Synergistic and separate effects of plasma and transient heat loads on the microstructure and physical properties of ITER-grade tungsten. Phys. Scr. 2021, 96, 124052. [Google Scholar] [CrossRef]
- Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M. Sequential and simultaneous thermal and particle exposure of tungsten. Phys. Scr. 2016, T167, 14053. [Google Scholar] [CrossRef]
- Wirtz, M.; Bardin, S.; Huber, A.; Kreter, A.; Linke, J.; Morgan, T.; Pintsuk, G.; Reinhart, M.; Sergienko, G.; Steudel, I.; et al. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material. Nucl. Fusion 2015, 55, 123017. [Google Scholar] [CrossRef] [Green Version]
- Kajita, S.; Sakaguchi, W.; Ohno, N.; Yoshida, N.; Saeki, T. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl. Fusion 2009, 49, 95005. [Google Scholar] [CrossRef]
- Kajita, S.; Kawaguchi, S.; Ohno, N.; Yoshida, N. Enhanced growth of large-scale nanostructures with metallic ion precipitation in helium plasmas. Sci. Rep. 2018, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Qu, M.; Yan, S.; Zhang, A.; Peng, S.; Xue, J.; Wang, Y. Helium-induced hardening effect in polycrystalline tungsten. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2017, 406, 643–647. [Google Scholar] [CrossRef]
- Nishijima, D.; Ye, M.; Ohno, N.; Takamura, S. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II. J. Nucl. Mater. 2004, 329–333, 1029–1033. [Google Scholar] [CrossRef]
- Kreter, A.; Brandt, C.; Huber, A.; Kraus, S.; Möller, S.; Reinhart, M.; Schweer, B.; Sergienko, G.; Unterberg, B. Linear Plasma Device PSI-2 for Plasma-Material Interaction Studies. Fusion Sci. Technol. 2015, 68, 8–14. [Google Scholar] [CrossRef]
- Reiter, D.; Wolf, G.H.; Kever, H. Burn condition, helium particle confinement and exhaust efficiency. Nucl. Fusion 1990, 30, 2141–2155. [Google Scholar] [CrossRef]
- Davis, J.; Barabash, V.; Makhankov, A.; Plöchl, L.; Slattery, K. Assessment of tungsten for use in the ITER plasma facing components. J. Nucl. Mater. 1998, 258–263, 308–312. [Google Scholar] [CrossRef]
- Panayotis, S.; Hirai, T.; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, T.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.; et al. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties. Nucl. Mater. Energy 2016, 12, 200–204. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Yan, Q.-Z.; Yang, C.-T.; Wang, T.-N.; Xia, M.; Ge, C.-C. Recrystallization temperature of tungsten with different deformation degrees. Rare Met. 2014, 35, 566–570. [Google Scholar] [CrossRef]
- Gunn, J.; Bucalossi, J.; Corre, Y.; Diez, M.; Delmas, E.; Fedorczak, N.; Grosjean, A.; Firdaouss, M.; Gaspar, J.; Loarer, T.; et al. Thermal loads in gaps between ITER divertor monoblocks: First lessons learnt from WEST. Nucl. Mater. Energy 2021, 27, 100920. [Google Scholar] [CrossRef]
- Loewenhoff, T.; Linke, J.; Pintsuk, G.; Thomser, C. Tungsten and CFC degradation under combined high cycle transient and steady state heat loads. Fusion Eng. Des. 2012, 87, 1201–1205. [Google Scholar] [CrossRef]
- Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.; Federici, G.; Merola, M.; Linke, J.; Hirai, T.; Zhitlukhin, A.; et al. Behaviour of melted tungsten plasma facing components under ITER-like transient heat loads. Fusion Eng. Des. 2008, 83, 1077–1081. [Google Scholar] [CrossRef]
- Ialovega, M.; Bernard, E.; Barthe, M.-F.; Bisson, R.; Campos, A.; Cabié, M.; Neisius, T.; Sakamoto, R.; Kreter, A.; Grisolia, C.; et al. Helium-induced morphology evolution in tungsten under thermal treatment. Nucl. Fusion 2022, 62, 126022. [Google Scholar] [CrossRef]
- Wirtz, M.; Berger, M.; Huber, A.; Kreter, A.; Linke, J.; Pintsuk, G.; Rasinski, M.; Sergienko, G.; Unterberg, B. Influence of helium induced nanostructures on the thermal shock performance of tungsten. Nucl. Mater. Energy 2016, 9, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Terentyev, D.; Jenus, P.; Broco, E.S.; Zinovev, A.; Chang, C.; Garcia-Rosales, C.; Kocen, M.; Novak, S.; Van Renterghem, W. Development of irradiation tolerant tungsten alloys for high temperature nuclear applications. Nucl. Fusion 2022, 62, 86035. [Google Scholar] [CrossRef]
- Coenen, J.W. Fusion Materials Development at Forschungszentrum Jülich. Adv. Eng. Mater. 2020, 22, 1901376. [Google Scholar] [CrossRef] [Green Version]
- Linsmeier, C.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; et al. Development of advanced high heat flux and plasma-facing materials. Nucl. Fusion 2017, 57, 92007. [Google Scholar] [CrossRef]
- Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, C.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J.; Du, H.; Mayer, J.; et al. Smart tungsten alloys as a material for the first wall of a future fusion power plant. Nucl. Fusion 2017, 57, 66020. [Google Scholar] [CrossRef]
- Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, C.; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J.W.; et al. Advanced smart tungsten alloys for a future fusion power plant. Plasma Phys. Control. Fusion 2017, 59, 64003. [Google Scholar] [CrossRef]
Sample | A | B | C | D | E |
---|---|---|---|---|---|
Pabs (GWm−2) | 0.6 | 0.8 | 1.0 | 0.8 | 0.8 |
FHF (MWs−1/2) | 13 | 18 | 22 | 18 | 18 |
Flux (m−2s−1) | 3.2 × 1021 | 3.2 × 1021 | 3.2 × 1021 | 5.5 × 1021 | 3.2 × 1021 |
Fluence (m−2) | 3.6 × 1025 | 3.6 × 1025 | 3.6 × 1025 | 5.9 × 1025 | 3.6 × 1025 |
Gas | D/He (6%) | D/He (6%) | D/He (6%) | D/He (6%) | D |
Ra (µm) | 25.7 | 49.5 | 33.5 | 47.3 | 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gago, M.; Kreter, A.; Unterberg, B.; Wirtz, M. Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks. J. Nucl. Eng. 2023, 4, 204-212. https://doi.org/10.3390/jne4010016
Gago M, Kreter A, Unterberg B, Wirtz M. Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks. Journal of Nuclear Engineering. 2023; 4(1):204-212. https://doi.org/10.3390/jne4010016
Chicago/Turabian StyleGago, Mauricio, Arkadi Kreter, Bernhard Unterberg, and Marius Wirtz. 2023. "Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks" Journal of Nuclear Engineering 4, no. 1: 204-212. https://doi.org/10.3390/jne4010016
APA StyleGago, M., Kreter, A., Unterberg, B., & Wirtz, M. (2023). Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks. Journal of Nuclear Engineering, 4(1), 204-212. https://doi.org/10.3390/jne4010016