Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review
Abstract
:1. Introduction
2. Search Strategy
3. Nutritional Characteristics of the Cactus Family
4. Effects of Cactus Consumption on Liver Function
4.1. In Vitro Studies
4.2. Animal Model Studies
Study Design | Product | Dose/Administration Period | Mechanism/Repercussion | Reference |
---|---|---|---|---|
Adult Wistar rats | Opuntia robusta and Opuntia streptacantha extracts | 800 mg/kg/day | Reduction in the AST and ALT enzymes | [24] |
Furofuran lignans isolated from the seeds of Opuntia ficus- indica | 50 μM for a single dose | Reduction in the levels of intracellular reactive oxygen species, preservation of the activities of antioxidant enzymes, and the maintenance of GSH content | [25] | |
Opuntia ficus indica (L.) fruit juice | 3 mL/rat for 9 days | Stabilization of hepatic transaminases, reduced apoptosis in epithelial cells, and preservation of the normal morphology of liver cells | [30] | |
Opuntia microdasys, floral decoction | 100 mg/kg/day or 200 mg/kg/day | Reduction in the enzymes AST and ALT | [32] | |
Pereskia aculeata, ethanolic extract | 1250, 2500 or 5000 mg/kg in a single dose | It showed no toxicity | [35] | |
Tilapia fish (Oreochromis niloticus) | Prickly pear fruit (Opuntia ficus indica) Peel | 100 g or 200 g of prickly pear fruit peel for 45 days | Decline in AST and ALP with 220 g; greater activity of the enzyme CAT, and higher SOD and GSH levels; a decrease in MDA | [33] |
Adult Wistar rats | Pereskia grandifolia extract | 30, 100, and 300 mg/kg for 3 weeks | It showed no toxicity; normal patterns of biochemical and histological parameters | [34] |
Opuntia robusta phytochemicals: betanin and N-acetylcysteine | 800 mg/kg, 25 mg/kg, and 50 mg/kg | The number of cells positive for active caspase-3 was similar to the control group | [31] | |
Adult Swiss mice | Pilosocereus gounellei, saline extract | 250, 500, or 1000 mg/kg for 4 weeks | There was a reversible behavioral change only at the highest dose; presence of proteins in the urine and lymphocytic infiltrates in the liver, lungs, and spleen; decreases in total cholesterol and triglycerides at doses of 500 and 1000 mg/kg. | [36] |
4.3. Clinical Studies
5. Effects of Cactus Consumption on Liver Diseases
5.1. In Vitro Studies
5.2. Animal Model Studies
5.3. Clinical Studies
6. Safety of the Consumption of Cacti and Drug–Drug Interactions
7. Concluding Remarks and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Sumaya-Martínez, M.T.; Gutiérrez-Salinas, J.; Bautista, M.; Morales-González, Á.; García-Luna y González-Rubio, M.; Aguilar-Faisal, J.L.; Morales-González, J.A. Review of natural products with hepatoprotective effects. World J Gastroenterol. 2014, 20, 14787–14804. [Google Scholar] [CrossRef] [PubMed]
- Shoukat, R.; Cappai, M.; Pia, G.; Pilia, L. An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications. Appl. Sci. 2023, 13, 7724. [Google Scholar] [CrossRef]
- Monteiro, S.S.; Almeida, R.L.; Santos, N.C.; Pereira, E.M.; Silva, A.P.; Oliveira, H.M.L.; de B. Pasquali, M.A. New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods 2023, 12, 2494. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Brewer, M.; Garcia, F.; Feugang, J.M.; Wang, J.; Zang, R.; Liu, H.; Zou, C. Cactus Pear: A Natural Product in Cancer Chemoprevention. Nutr. J. 2005, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Front Biosci. 2006, 1, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Butera, D.; Tesoriere, L.; Di Gaudio, F.; Bongiorno, A.; Allegra, M.; Pintaudi, A.M.; Kohen, R.; Livrea, M.A. Antioxidant Activities of Sicilian Prickly Pear (Opuntia ficus-indica) Fruit Extracts and Reducing Properties of Its Betalains: Betanin and Indicaxanthin. J. Agric. Food Chem. 2002, 50, 6895–6901. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia Spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Schreckinger, M.E.; Wang, J.; Yousef, G.; Lila, M.A.; Gonzalez de Mejia, E. Antioxidant Capacity and in Vitro Inhibition of Adipogenesis and Inflammation by Phenolic Extracts of Vaccinium floribundum and Aristotelia chilensis. J. Agric. Food Chem. 2010, 58, 8966–8976. [Google Scholar] [CrossRef]
- Msaddak, L.; Abdelhedi, O.; Kridene, A.; Rateb, M.; Belbahri, L.; Ammar, E.; Nasri, M.; Zouari, N. Opuntia ficus-indica Cladodes as a Functional Ingredient: Bioactive Compounds Profile and Their Effect on Antioxidant Quality of Bread. Lipids Health Dis. 2017, 16, 32. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; O’Sullivan, J.; Heneghan, C.J. The Effect of Cactus Pear (Opuntia ficus-indica) on Body Weight and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrition 2015, 31, 640–646. [Google Scholar] [CrossRef]
- Pulido-Hornedo, N.A.; Ventura-Juárez, J.; Guevara-Lara, F.; González-Ponce, H.A.; Sánchez-Alemán, E.; Buist-Homan, M.; Moshage, H.; Martínez-Saldaña, M.C. Hepatoprotective Effect of Opuntia robusta Fruit Biocomponents in a Rat Model of Thioacetamide-Induced Liver Fibrosis. Plants 2022, 11, 2039. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Lim, K.J.; Tantengco, O.A.G.; Carag, H.M.; Gonçalves, S.; Romano, A.; Das, S.K.; Coy-Barrera, E.; Shin, H.-S.; Gutiérrez-Grijalva, E.P.; et al. Cactus: Chemical, Nutraceutical Composition and Potential Bio-Pharmacological Properties. Phytother. Res. 2021, 35, 1248–1283. [Google Scholar] [CrossRef] [PubMed]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.S.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [PubMed]
- Uebelhack, R.; Busch, R.; Alt, F.; Beah, Z.-M.; Chong, P.-W. Effects of Cactus Fiber on the Excretion of Dietary Fat in Healthy Subjects: A Double Blind, Randomized, Placebo-Controlled, Crossover Clinical Investigation. Curr. Ther. Res. 2014, 76, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Santillán, E.; Portillo-Reyes, J.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Mercado-Gonzalez, P.E.; Izquierdo-Vega, J.A.; Vargas-Mendoza, N.; Álvarez-González, I.; Fregoso-Aguilar, T.; Delgado-Olivares, L.; et al. Opuntia Genus in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 1. Horticulturae 2022, 8, 88. [Google Scholar] [CrossRef]
- Besné-Eseverri, I.; Trepiana, J.; Gómez-Zorita, S.; Antunes-Ricardo, M.; Cano, M.P.; Portillo, M.P. Beneficial Effects of Opuntia Spp. on Liver Health. Antioxidants 2023, 12, 1174. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Shen, M.; Yu, Q.; Chen, Y.; Huang, L.; Xie, J. The Water-Soluble Non-Starch Polysaccharides from Natural Resources against Excessive Oxidative Stress: A Potential Health-Promoting Effect and Its Mechanisms. Int. J. Biol. Macromol. 2021, 171, 320–330. [Google Scholar] [CrossRef] [PubMed]
- González-Ponce, H.A.; Rincón-Sánchez, A.R.; Jaramillo-Juárez, F.; Moshage, H. Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs. Nutrients 2018, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- González-Ponce, H.A.; Martínez-Saldaña, M.C.; Tepper, P.G.; Quax, W.J.; Buist-Homan, M.; Faber, K.N.; Moshage, H. Betacyanins, Major Components in Opuntia Red-Purple Fruits, Protect against Acetaminophen-Induced Acute Liver Failure. Food Res. Int. 2020, 137, 109461. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, P.; Guerrero-Rubio, M.A.; Henarejos-Escudero, P.; García-Carmona, F.; Gandía-Herrero, F. Health-Promoting Potential of Betalains in Vivo and Their Relevance as Functional Ingredients: A Review. Trends Food Sci. Technol. 2022, 122, 66–82. [Google Scholar] [CrossRef]
- Díaz, M.D.S.S.; Barba De La Rosa, A.-P.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayre, A. Opuntia Spp.: Characterization and Benefits in Chronic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 8634249. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.-W.; Lau, K.-Z.; Gruenwald, J.; Uebelhack, R. A Review of the Efficacy and Safety of Litramine IQP-G-002AS, an Opuntia ficus-indica Derived Fiber for Weight Management. Evid. Based Complement. Altern. Med. 2014, 2014, e943713. [Google Scholar] [CrossRef] [PubMed]
- González-Ponce, H.A.; Martínez-Saldaña, M.C.; Rincón-Sánchez, A.R.; Sumaya-Martínez, M.T.; Buist-Homan, M.; Faber, K.N.; Moshage, H.; Jaramillo-Juárez, F. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage. Nutrients 2016, 8, 607. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Yang, H.; Kim, H.W.; Kim, H.P.; Sung, S.H. Lignans from Opuntia ficus-indica Seeds Protect Rat Primary Hepatocytes and HepG2 Cells against Ethanol-Induced Oxidative Stress. Biosci. Biotechnol. Biochem. 2017, 81, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Huo, Y.; Yin, S.; Hu, H. Mechanisms of Acetaminophen-Induced Liver Injury and Its Implications for Therapeutic Interventions. Redox Biol. 2018, 17, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, T.; Kim, H.; Park, S.; Kim, H.; Sung, S. Hepatoprotective Flavonoids in Opuntia Ficus-Indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes. Pharmacogn. Mag. 2017, 13, 472–476. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Peralta-Adauto, L.; Afanador-Barajas, L.; Fernández-Luqueño, F.; Pérez-Soto, E.; Campos-Montiel, R.; Peláez-Acero, A. Inhibition of Urease, Elastase, and β-Glucuronidase Enzymatic Activity by Applying Aqueous Extracts of Opuntia oligacantha C.F. Först Acid Fruits: In Vitro Essay under Simulated Digestive Conditions. Appl. Sci. 2021, 11, 7705. [Google Scholar] [CrossRef]
- Ressaissi, A.; Attia, N.; Pacheco, R.; Falé, P.L.; Serralheiro, M.L.M. Cholesterol Transporter Proteins in HepG2 Cells Can Be Modulated by Phenolic Compounds Present in Opuntia ficus-indica Aqueous Solutions. J. Funct. Foods 2020, 64, 103674. [Google Scholar] [CrossRef]
- Galati, E.M.; Mondello, M.R.; Lauriano, E.R.; Taviano, M.F.; Galluzzo, M.; Miceli, N. Opuntia ficus-indica (L.) Mill. Fruit Juice Protects Liver from Carbon Tetrachloride-Induced Injury. Phytother. Res. 2005, 19, 796–800. [Google Scholar] [CrossRef]
- Villa-Jaimes, G.S.; Moshage, H.; Avelar-González, F.J.; González-Ponce, H.A.; Buist-Homan, M.; Guevara-Lara, F.; Sánchez-Alemán, E.; Martínez-Hernández, S.L.; Ventura-Juárez, J.; Muñoz-Ortega, M.H.; et al. Molecular and Antioxidant Characterization of Opuntia robusta Fruit Extract and Its Protective Effect against Diclofenac-Induced Acute Liver Injury in an In Vivo Rat Model. Antioxidants 2023, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Chahdoura, H.; Adouni, K.; Khlifi, A.; Dridi, I.; Haouas, Z.; Neffati, F.; Flamini, G.; Mosbah, H.; Achour, L. Hepatoprotective Effect of Opuntia microdasys (Lehm.) Pfeiff Flowers against Diabetes Type II Induced in Rats. Biomed. Pharmacother. 2017, 94, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.A.; Abd El-Rahman, G.I.; Behairy, A.; Beheiry, R.R.; Hendam, B.M.; Alsubaie, F.M.; Khalil, S.R. Influence of Feeding Quinoa (Chenopodium Quinoa) Seeds and Prickly Pear Fruit (Opuntia ficus-indica) Peel on the Immune Response and Resistance to Aeromonas Sobria Infection in Nile Tilapia (Oreochromis niloticus). Animals 2020, 10, 2266. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Albuquerque, E.; Ratti da Silva, G.; de Abreu Braga, F.; Pelegrini Silva, E.; Sposito Negrini, K.; Rodrigues Fracasso, J.A.; Pires Guarnier, L.; Jacomassi, E.; Ribeiro-Paes, J.T.; da Silva Gomes, R.; et al. Bridging the Gap: Exploring the Preclinical Potential of Pereskia grandifolia in Metabolic-Associated Fatty Liver Disease. Evid. Based Complement. Altern. Med. 2023, 2023, e8840427. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.O.; Seifert, M.; Nora, F.R.; Bobrowski, V.L.; Freitag, R.A.; Kucera, H.R.; Nora, L.; Gaikwad, N.W. Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant. J. Med. Food 2017, 20, 403–409. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.M.; da Silva, W.A.V.; Ferreira, M.R.A.; Paiva, P.M.G.; de Medeiros, P.L.; Soares, L.A.L.; Carvalho, B.M.; Napoleão, T.H. Assessment of 28-Day Oral Toxicity and Antipyretic Activity of the Saline Extract from Pilosocereus gounellei (Cactaceae) Stem in Mice. J. Ethnopharmacol. 2019, 234, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.R.; da Silva, B.P.; do Carmo, M.A.V.; Azevedo, L.; Nogueira, D.A.; Duarte Martino, H.S.; Silva, R.R. Effect of Pereskia aculeata Mill. in Vitro and in Overweight Humans: A Randomized Controlled Trial. J. Food Biochem. 2019, 43, e12903. [Google Scholar] [CrossRef] [PubMed]
- Proeyen, K.V.; Ramaekers, M.; Pischel, I.; Hespel, P. Opuntia Ficus-Indica Ingestion Stimulates Peripheral Disposal of Oral Glucose Before and After Exercise in Healthy Men. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Tesoriere, L.; Butera, D.; Pintaudi, A.M.; Allegra, M.; Livrea, M.A. Supplementation with Cactus Pear (Opuntia ficus-indica) Fruit Decreases Oxidative Stress in Healthy Humans: A Comparative Study with Vitamin C123. Am. J. Clin. Nutr. 2004, 80, 391–395. [Google Scholar] [CrossRef]
- Avila-Nava, A.; Calderón-Oliver, M.; Medina-Campos, O.N.; Zou, T.; Gu, L.; Torres, N.; Tovar, A.R.; Pedraza-Chaverri, J. Extract of Cactus (Opuntia ficus-indica) Cladodes Scavenges Reactive Oxygen Species in Vitro and Enhances Plasma Antioxidant Capacity in Humans. J. Funct. Foods 2014, 10, 13–24. [Google Scholar] [CrossRef]
- Attanzio, A.; Tesoriere, L.; Vasto, S.; Pintaudi, A.M.; Livrea, M.A.; Allegra, M. Short-Term Cactus Pear [Opuntia ficus-indica (L.) Mill] Fruit Supplementation Ameliorates the Inflammatory Profile and Is Associated with Improved Antioxidant Status among Healthy Humans. Food Nutr. Res. 2018, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Toshikuni, N.; Tsutsumi, M.; Arisawa, T. Clinical Differences between Alcoholic Liver Disease and Nonalcoholic Fatty Liver Disease. World J. Gastroenterol. 2014, 20, 8393–8406. [Google Scholar] [CrossRef] [PubMed]
- Ornos, E.D.; Murillo, K.J.; Ong, J.P. Liver Diseases: Perspective from the Philippines. Ann. Hepatol. 2023, 28, 101085. [Google Scholar] [CrossRef] [PubMed]
- Baweja, S.; Mittal, A.; Thangariyal, S.; Subudhi, P.D.; Gautam, S.; Kaul, R. Unveiling the Effect of Estrogen Receptors in Alcoholic Liver Disease: A Novel Outlook. Liver Res. 2023, 7, 333–341. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose Tissue and Insulin Resistance in Obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a Continuum: From Obesity to Metabolic Syndrome and Diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Smirne, C.; Croce, E.; Di Benedetto, D.; Cantaluppi, V.; Comi, C.; Sainaghi, P.P.; Minisini, R.; Grossini, E.; Pirisi, M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers 2022, 2, 30–76. [Google Scholar] [CrossRef]
- Duell, P.B.; Welty, F.K.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.E.; Horton, J.D.; Pressman, G.S.; Toth, P.P.; et al. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e168–e185. [Google Scholar] [CrossRef]
- Ben Saad, A.; Dalel, B.; Rjeibi, I.; Smida, A.; Ncib, S.; Zouari, N.; Zourgui, L. Phytochemical, Antioxidant and Protective Effect of Cactus Cladodes Extract against Lithium-Induced Liver Injury in Rats. Pharm. Biol. 2017, 55, 516–525. [Google Scholar] [CrossRef]
- Lu, W.-C.; Chiu, C.-S.; Chan, Y.-J.; Mulio, A.T.; Li, P.-H. Recent Research on Different Parts and Extracts of Opuntia dillenii and Its Bioactive Components, Functional Properties, and Applications. Nutrients 2023, 15, 2962. [Google Scholar] [CrossRef] [PubMed]
- Zorgui, L.; Ayed-Boussema, I.; Ayed, Y.; Bacha, H.; Hassen, W. The Antigenotoxic Activities of Cactus (Opuntia ficus-indica) Cladodes against the Mycotoxin Zearalenone in Balb/c Mice: Prevention of Micronuclei, Chromosome Aberrations and DNA Fragmentation. Food Chem. Toxicol. 2009, 47, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Villa-Jaimes, G.S.; Aguilar-Mora, F.A.; González-Ponce, H.A.; Avelar-González, F.J.; Martínez Saldaña, M.C.; Buist-Homan, M.; Moshage, H. Biocomponents from Opuntia robusta and Opuntia streptacantha Fruits Protect against Diclofenac-Induced Acute Liver Damage in Vivo and in Vitro. J. Funct. Foods 2022, 89, 104960. [Google Scholar] [CrossRef]
- Shirazinia, R.; Golabchifar, A.A.; Rahimi, V.B.; Jamshidian, A.; Samzadeh-Kermani, A.; Hasanein, P.; Hajinezhad, M.; Askari, V.R. Protective Effect of Opuntia dillenii Haw Fruit against Lead Acetate-Induced Hepatotoxicity: In Vitro and In Vivo Studies. Evid. Based Complement. Altern. Med. 2021, 2021, e6698345. [Google Scholar] [CrossRef] [PubMed]
- Abid, F.; Saleem, M.; Leghari, T.; Rafi, I.; Maqbool, T.; Fatima, F.; Arshad, A.M.; Khurshid, S.; Naz, S.; Hadi, F.; et al. Evaluation of in Vitro Anticancer Potential of Pharmacological Ethanolic Plant Extracts Acacia modesta and Opuntia monocantha against Liver Cancer Cells. Braz. J. Biol. 2022, 84, e252526. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Xiong, X.; Zhang, D.; Zekrumah, M.; Hu, Y.; Gu, X.; Wang, C.; Zou, X. Optimization of Betacyanins from Agricultural By-Products Using Pressurized Hot Water Extraction for Antioxidant and in Vitro Oleic Acid-Induced Steatohepatitis Inhibitory Activity. J. Food Biochem. 2019, 43, e13044. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Avila, J.A. The Pharmacological Effects of Cactus Extracts on Liver Health and Diseases: A Systematic Review. Arch. Med. Res. 2019, 50, 230–241. [Google Scholar]
- Morán-Ramos, S.; Avila-Nava, A.; Tovar, A.R.; Pedraza-Chaverri, J.; López-Romero, P.; Torres, N. Opuntia ficus-indica (Nopal) Attenuates Hepatic Steatosis and Oxidative Stress in Obese Zucker (Fa/Fa) Rats, 3. J. Nutr. 2012, 142, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Ncibi, S.; Ben Othman, M.; Akacha, A.; Krifi, M.N.; Zourgui, L. Opuntia ficus-indica Extract Protects against Chlorpyrifos-Induced Damage on Mice Liver. Food Chem. Toxicol. 2008, 46, 797–802. [Google Scholar] [CrossRef]
- Alimi, H.; Hfaeidh, N.; Mbarki, S.; Bouoni, Z.; Sakly, M.; Rouma, K.B. Evaluation of Opuntia ficus-indica f. Inermis Fruit Juice Hepatoprotective Effect upon Ethanol Toxicity in Rats. Gen. Physiol. Biophys. 2012, 31, 335–342. [Google Scholar] [CrossRef]
- Kang, J.-W.; Shin, J.-K.; Koh, E.-J.; Ryu, H.; Kim, H.J.; Lee, S.-M. Opuntia ficus-indica Seed Attenuates Hepatic Steatosis and Promotes M2 Macrophage Polarization in High-Fat Diet–Fed Mice. Nutr. Res. 2016, 36, 369–379. [Google Scholar] [CrossRef]
- Sánchez-Tapia, M.; Aguilar-López, M.; Pérez-Cruz, C.; Pichardo-Ontiveros, E.; Wang, M.; Donovan, S.M.; Tovar, A.R.; Torres, N. Nopal (Opuntia ficus-indica) Protects from Metabolic Endotoxemia by Modifying Gut Microbiota in Obese Rats Fed High Fat/Sucrose Diet. Sci. Rep. 2017, 7, 4716. [Google Scholar] [CrossRef]
- Djerrou, Z.; Maameri, Z.; Halmi, S.; Djaalab, H.; Riachi, F.; Benmaiza, L.; Hamdipacha, Y. Hepatoprotective Effect of Opuntia ficus-indica Aqueous Extract against Carbon Tetrachloride-Induced Toxicity in Rats. Online J. Biol. Sci. 2015, 15, 36–41. [Google Scholar] [CrossRef]
- Zourgui, L.; Golli, E.E.; Bouaziz, C.; Bacha, H.; Hassen, W. Cactus (Opuntia ficus-indica) Cladodes Prevent Oxidative Damage Induced by the Mycotoxin Zearalenone in Balb/C Mice. Food Chem. Toxicol. 2008, 46, 1817–1824. [Google Scholar] [CrossRef]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of Fruit Vinegars on Liver Damage and Oxidative Stress in High-Fat-Fed Rats. Pharma. Biol. 2016, 54, 260–265. [Google Scholar] [CrossRef]
- Terzo, S.; Attanzio, A.; Calvi, P.; Mulè, F.; Tesoriere, L.; Allegra, M.; Amato, A. Indicaxanthin from Opuntia ficus-indica Fruit Ameliorates Glucose Dysmetabolism and Counteracts Insulin Resistance in High-Fat-Diet-Fed Mice. Antioxidants 2022, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Bouhrim, M.; Ouassou, H.; Choukri, M.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Hepatoprotective Effect of Opuntia dillenii Seed Oil on CCl4 Induced Acute Liver Damage in Rat. Asian Pac. J. Trop. Biomed. 2018, 8, 254. [Google Scholar] [CrossRef]
- Zhao, L.-Y.; Huang, W.; Yuan, Q.-X.; Cheng, J.; Huang, Z.-C.; Ouyang, L.-J.; Zeng, F.-H. Hypolipidaemic Effects and Mechanisms of the Main Component of Opuntia dillenii Haw. Polysaccharides in High-Fat Emulsion-Induced Hyperlipidaemic Rats. Food Chem. 2012, 134, 964–971. [Google Scholar] [CrossRef]
- Gao, J.; Han, Y.-L.; Jin, Z.-Y.; Xu, X.-M.; Zha, X.-Q.; Chen, H.-Q.; Yin, Y.-Y. Protective Effect of Polysaccharides from Opuntia dillenii Haw. Fruits on Streptozotocin-Induced Diabetic Rats. Carbohydr. Polym. 2015, 124, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Y.; Lan, Q.J.; Huang, Z.C.; Ouyang, L.J.; Zeng, F.H. Antidiabetic Effect of a Newly Identified Component of Opuntia dillenii Polysaccharides. Phytomedicine 2011, 18, 661–668. [Google Scholar] [CrossRef]
- Liu, T.; Li, B.; Zhou, X.; Chen, H. A Study on the Time–Effect and Dose–Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, D.; Bouaziz, C.; Ayed, Y.; Ben Mansour, H.; Zourgui, L.; Bacha, H. Chemopreventive Effect of Cactus Opuntia Ficus Indica on Oxidative Stress and Genotoxicity of Aflatoxin B1. Nutr. Metab. 2011, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, D.; Ayed, Y.; Bouaziz, C.; Zourgui, L.; Hassen, W.; Bacha, H. Hepatoprotective Effect of Cactus Extract against Carcinogenicity of Benzo(a)Pyrene on Liver of Balb/C Mice. J. Med. Plant Res. 2011, 5, 4627–4639. [Google Scholar]
- Al-Kubaisy, K.N.; Essa, L.Y.A.-; Shawagfeh, M.T. Stimulation of Hepatocytes Repair by Fruit Juice of Opuntia ficus-indica in Anti Cancer Drug Cyclophosphamide (CP)-Induced Liver Toxicity in Mice. Annu. Res. Rev. Biol. 2016, 10, 1–8. [Google Scholar] [CrossRef]
- Iftikhar, K.; Siddique, F.; Ameer, K.; Arshad, M.; Kharal, S.; Mohamed Ahmed, I.A.; Khalid, S. In Vivo Anti-Salmonella Properties of Aqueous Extract of Prickly Pear (Opuntia ficus-indica) Cladode, Hepatological and Toxicological Evaluation. Food Sci. Nutr. 2024, 00, 1–11. [Google Scholar] [CrossRef]
- Tahri-Joutey, M.; Saih, F.-E.; El Kebbaj, R.; Gondcaille, C.; Vamecq, J.; Latruffe, N.; Lizard, G.; Savary, S.; Nasser, B.; Cherkaoui-Malki, M.; et al. Protective Effect of Nopal Cactus (Opuntia ficus-indica) Seed Oil against Short-Term Lipopolysaccharides-Induced Inflammation and Peroxisomal Functions Dysregulation in Mouse Brain and Liver. Int. J. Mol. Sci. 2022, 23, 11849. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Irshad, I.; Baig, M.K.; Naseer, F. Evaluation of Hepatoprotective Effect of Chloroform and Methanol Extracts of Opuntia monacantha in Paracetamol-Induced Hepatotoxicity in Rabbits. Bangladesh J. Pharmacol. 2015, 10, 16–20. [Google Scholar] [CrossRef]
- Duarte-Medina, D.J.; Martínez-Flores, H.E.; Tranquilino-Rodríguez, E.; Secundino, J.P. Hypolipidemic-Hepatoprotective Effect of a Cookie Added with Opuntia atropes Cladodes and Opuntia joconostle Fruits in a Rat Model. Future Foods 2024, 9, 100306. [Google Scholar] [CrossRef]
- Héliès-Toussaint, C.; Fouché, E.; Naud, N.; Blas-Y-Estrada, F.; del Socorro Santos-Diaz, M.; Nègre-Salvayre, A.; Barba de la Rosa, A.P.; Guéraud, F. Opuntia Cladode Powders Inhibit Adipogenesis in 3 T3-F442A Adipocytes and a High-Fat-Diet Rat Model by Modifying Metabolic Parameters and Favouring Faecal Fat Excretion. BMC Complement. Med. Ther. 2020, 20, 33. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; de Freitas, A.F.S.; Costa, M.D.d.S.; Torres, M.K.d.S.; Castro, Y.A.d.A.; Almeida, A.M.R.; Paiva, P.M.G.; Carvalho, B.M.; Napoleão, T.H. Pilosocereus gounellei (Cactaceae) Stem Extract Decreases Insulin Resistance, Inflammation, Oxidative Stress, and Cardio-Metabolic Risk in Diet-Induced Obese Mice. J. Ethnopharmacol. 2021, 265, 113327. [Google Scholar] [CrossRef]
- Ramli, N.S.; Brown, L.; Ismail, P.; Rahmat, A. Effects of Red Pitaya Juice Supplementation on Cardiovascular and Hepatic Changes in High-Carbohydrate, High-Fat Diet-Induced Metabolic Syndrome Rats. BMC Complement. Altern. Med. 2014, 14, 189. [Google Scholar] [CrossRef]
- Yeh, W.-J.; Tsai, C.-C.; Ko, J.; Yang, H.-Y. Hylocereus Polyrhizus Peel Extract Retards Alcoholic Liver Disease Progression by Modulating Oxidative Stress and Inflammatory Responses in C57BL/6 Mice. Nutrients 2020, 12, 3884. [Google Scholar] [CrossRef]
- Lugo-Radillo, A.; Delgado-Enciso, I.; Rodriguez-Hernandez, A.; Peña-Beltran, E.; Martinez-Martinez, R.; Galvan-Salazar, H. Inhibitory Effect of Betanin from Hylocereus ocamponis Against Steatohepatitis in Mice Fed a High-Fat Diet. Nat. Prod. Commun. 2020, 15, 1934578X20932013. [Google Scholar] [CrossRef]
- Song, H.; Chu, Q.; Xu, D.; Xu, Y.; Zheng, X. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice. J. Agric. Food Chem. 2016, 64, 236–244. [Google Scholar] [CrossRef]
- Song, H.; Zheng, Z.; Wu, J.; Lai, J.; Chu, Q.; Zheng, X. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice. PLoS ONE 2016, 11, e0149670. [Google Scholar] [CrossRef]
- de Almeida, M.E.F.; Simão, A.A.; Corrêa, A.D.; de Barros Fernandes, R.V. Improvement of Physiological Parameters of Rats Subjected to Hypercaloric Diet, with the Use of Pereskia grandifolia (Cactaceae) Leaf Flour. Obes. Res. Clin. Pract. 2016, 10, 701–709. [Google Scholar] [CrossRef]
- Gomez-Flores, R.; Quintanilla-Licea, R.; Hernández-Martínez, H.C.; Samaniego-Escamilla, M.; Tamez-Guerra, P.; Monreal-Cuevas, E.; Tamez-Guerra, R.; Rodriguez-Padilla, C. Survival of Lymphoma-Bearing Mice by Pachycereus marginatus Cactus Extracts and Elucidation of Bioactive Compounds. Nat. Prod. Commun. 2019, 14, 1934578X19845814. [Google Scholar] [CrossRef]
- Fabela-Illescas, H.E.; Ávila-Domínguez, R.; Hernández-Pacheco, A.; Ariza Ortega, J.A.; Betanzos-Cabrera, G. Effect of a beverage made from cactus pear (Nopalea cochenillifera (L) SALM-DYCK) in a rural population of Hidalgo, Mexico; a pilot clinical trial. Nutr. Hosp. 2015, 32, 2710–2714. [Google Scholar] [CrossRef] [PubMed]
- Linarès, E.; Thimonier, C.; Degre, M. The Effect of Neopuntia® on Blood Lipid Parameters—Risk Factors for the Metabolic Syndrome (Syndrome χ). Adv. Ther. 2007, 24, 1115–1125. [Google Scholar] [CrossRef]
- Grube, B.; Chong, P.-W.; Lau, K.-Z.; Orzechowski, H.-D. A Natural Fiber Complex Reduces Body Weight in the Overweight and Obese: A Double-Blind, Randomized, Placebo-Controlled Study. Obesity 2013, 21, 58–64. [Google Scholar] [CrossRef]
- López-Romero, P.; Pichardo-Ontiveros, E.; Avila-Nava, A.; Vázquez-Manjarrez, N.; Tovar, A.R.; Pedraza-Chaverri, J.; Torres, N. The Effect of Nopal (Opuntia ficus-indica) on Postprandial Blood Glucose, Incretins, and Antioxidant Activity in Mexican Patients with Type 2 Diabetes after Consumption of Two Different Composition Breakfasts. J. Acad. Nutr. Diet. 2014, 114, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Griggs, J. Single-Case Study of Appetite Control in Prader-Willi Syndrome, Over 12-Years by the Indian Extract Caralluma fimbriata. Genes 2019, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Armani, S.; Geier, A.; Forst, T.; Merle, U.; Alpers, D.H.; Lunnon, M.W. Effect of Changes in Metabolic Enzymes and Transporters on Drug Metabolism in the Context of Liver Disease: Impact on Pharmacokinetics and Drug–Drug Interactions. Br. J. Clin. Pharmacol. 2024, 90, 942–958. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.N.; Corbett, A.H.; Hawke, R.L. Common Herbal Dietary Supplement–Drug Interactions. Am. Fam. Physician 2017, 96, 101–107. [Google Scholar] [PubMed]
- Palatini, P.; Martin, S.D. Pharmacokinetic Drug Interactions in Liver Disease: An Update. World J. Gastroenterol. 2016, 22, 1260–1278. [Google Scholar] [CrossRef]
Study design | Species/product | Dose | Mechanism | Reference |
---|---|---|---|---|
Macrophage cells; Hepatocellular carcinoma HUH7 cells | Pereskia grandifolia leaf, aqueous extract | 100, 200, 400, 800, and 1600 μg/mL concentrations | Reduction in inflammatory processes; inhibition of hepatocellular carcinoma cells’ growth or viability | [34] |
Diclofenac-induced damage in hepatocytes | Fruit juice extracts from Opuntia robusta and Opuntia streptacantha | 125 µL/mL | Reduction of oxidative stress; prevention of cell necrosis | [53] |
Acetate-induced hepatotoxicity in HepG2 cell line | Opuntia dillenii fruit, hydroalcoholic extract | 20–80 μg/mL concentrations | Reduction in oxidative stress and inflammatory processes | [54] |
Human hepatoblastoma (HepG2) | Opuntia monocantha, ethanolic extract | 0.25, 0.5, 1, 2, or 3 mg/mL | Reduction in oxidative stress; apoptosis of cancer cells | [55] |
Inhibition of oleic acid-induced steatohepatitis | Peels of white-fleshed pitaya fruits (Hylocereus undatus) and freeze-dried prickly pear peels (Opuntia ficus-indica) | 60 and 100 μg/mL | Prickly pear peels suppressed the release of ALT and AST and increased carnitine palmitoyltransferase 1, increasing mitochondrial β-oxidation of fatty acids | [56] |
DNA from liver extracts of mice with oxidative damage induced by the mycotoxin zearalenone | Hydroalcoholic extract of cladodes of Opuntia ficus-indica | 25, 50, and 100 mg/kg | Prevention of DNA fragmentation in the liver |
Study Design | Product | Dose/Administration Period | Mechanism/Repercussion | Reference |
---|---|---|---|---|
Rat model of thioacetamide-induced liver fibrosis | Opuntia robusta aqueous fruit extracts | 800 mg/kg for 5 weeks | Reductions in AST and ALT enzymes; decreased oxidative stress; attenuation of the process of fibrosis | [12] |
Rats with metabolic-associated fatty liver disease | Pereskia grandifolia, ethanolic leaf extract | 30, 100, and 300 mg/kg for 2 weeks | Reductions in AST and ALT enzymes; decreased oxidative stress and liver injury | [34] |
In vivo (adult male Wistar rats) | Fruit juice extracts from Opuntia robusta and Opuntia streptacantha | 800 mg/kg body weight for 5 days | Reductions in AST and ALT enzymes; preservation of normal histologic patterns of the liver parenchyma | [53] |
Obese male Zucker rats | Dehydrated nopal | 4% of the diet | Elevation in the serum concentration of adiponectin and hepatic insulin signaling | [58] |
Rodents with steatosis induced by ethanol | Opuntia ficus-indica fruit juice | 20 and 40 mL/kg | Reductions in AST and ALT enzymes | [60] |
In vivo (obese adult male Wistar rats) | Opuntia ficus-indica (OFI) fruit seeds | 250, 500, and 1000 mg/kg for 4 weeks | Reductions in hepatic lipid content and the inflammatory process | [61] |
In vivo (obese adult male Wistar rats) | Dehydrated Opuntia ficus-indica cladodes | High-fat diet with the addition of 5% dehydrated cladode nopal for 1 month | Decreased hepatic steatosis and inflammatory processes | [62] |
Rats with carbon tetrachloride-induced poisoning | Opuntia ficus-indica, aqueous extract from the cladodes | 2 mL/kg and 5 mL/kg for 15 days | Reduction in the enzyme activity of AST | [63] |
Mice with oxidative damage induced by the mycotoxin zearalenone | Hydroalcoholic extract of cladodes of Opuntia ficus-indica | A single dose of 25, 50, and 100 mg/kg, administered 24 h before administration of ZEN | Total decrease in the oxidative damage induced by ZEN | [64] |
Rate fed a high-fat diet | Opuntia ficus-indica fruit vinegars | 7 mL/kg for 7 months | Reductions in hepatic triglyceride and LDL levels; reductions inAST and ALT enzymes; increased SOD and hepatic GPx | [65] |
In vivo (obese adult male Wistar rats) | Indicaxanthin from Opuntia ficus-indica | 0.4 mg/kg indicaxanthin for 4 weeks | Attenuation of oxidative stress and inflammation | [66] |
Rat with CCl4-induced liver damage | Opuntia dillenii seed oil | 2 mL/kg for 1 week | Attenuation of elevated levels of AST, ALT, and ALP enzymes; reduction in MDA | [67] |
Obese rats | Aqueous extract of polysaccharides (rhamnose, arabinose, galactose, glucose, and arabineuronic acid) from Opuntia dillenii Haw | 200 mg/kg and 400 mg/kg | Inhibited activity of hepatic HMG-CoA reductase | [68] |
Diabetic rats | Polysaccharides, comprising rhamnose, xylose, mannose, and glucose, from Opuntia dillenii | 200 mg/kg/day | Resulted in a significant decrease in MDA levels, while increasing the activity of SOD, CAT, and GPx | [69] |
Mice with streptozotocin (STZ)-induced diabetes | Opuntia dillenii polysaccharides | 50, 100, 200, and 400 mg/kg for 3 weeks | Increased hepatic activity of SOD and GSH-Px; reduced MDA levels | [70] |
Mice with liver injury induced by cadmium chloride | Opuntia dillenii polysaccharides | 200 mg/kg for varying periods (7, 14, 21, 28, and 35 days) | Improvements in the reduction in AST and ALT enzymes; reduced the inflammatory process; inhibited apoptosis of the cells | [71] |
Rabbits | Opuntia monacantha | Extracts at 200, 400, and 600 mg/kg for 1 week | Reductions in levels of ALT, AST, ALP, and total bilirubin and positive histopathological evaluations | [78] |
Rat with obesity and non-alcoholic fatty liver disease | Diet supplemented with Opuntia atropes cladodes and Opuntia joconostle fruit flour | Diet supplemented with 39.8%, 41.2% and 42.8% of cactus flour for 12 weeks | Reduction in the Lee index, total lipid content, and triacylglycerols in the liver | [79] |
In vivo (obese adult male rats) | Pilosocereus gounellei stem aqueous extract | 125, 250, or 500 mg/kg for 21 days | Improvements in the alanine aminotransferase and aspartate aminotransferase enzymes; reduced steatosis, inflammation, and collagen deposition; increased superoxide dismutase | [83] |
Adult rats, subjected to a diet rich in carbohydrates and fats | Pitaya juice | 5% diet | Decrease in liver enzymes after the intervention, probably reflecting the reduction in fat deposition and the degree of necrosis in liver cells | [84] |
Mice with alcoholic liver disease | Hylocereus polyrhizus peel extract | 500 and 1000 mg/kg for 11 weeks | Improvement in liver injury from accumulation of hepatic fat and hepatic lipid metabolism; reductions in inflammatory markers | [85] |
Rats subjected to a hypercaloric diet | Pereskia grandifolia leaf flour | Diet supplemented with 5% and 10% of the total food energy of P. grandifolia flour for 4 weeks | Reduction in liver weight; reduction in lipid droplets in the cytoplasm of liver cells; reduction in the degree of steatosis to mild. | [87] |
Species/Product | Animal | Anti-Inflammatory | Antioxidant | ALT and AST Enzymes | Minimized Steatosis | Minimized Hepatotoxicity | Reference |
---|---|---|---|---|---|---|---|
Opuntia robusta aqueous fruit extracts | Male rats | + | + | + | − | − | [12] |
Opuntia robusta and Opuntia streptacantha extracts | Adult male Wistar rats | − | − | − | − | + | [24] |
Opuntia ficus indica seed | Male rats | + | + | − | − | − | [25] |
Opuntia ficus indica fruit juice | Male Wistar rats (180–200 g) | − | − | − | − | + | [30] |
Aqueous extract of Opuntia robusta fruit | Wistar rats (200–250 g) | − | + | − | − | + | [31] |
Opuntia microdasys floral decoction | Adult Wistar rats | − | + | + | − | − | [32] |
Opuntia ficus indica Prickly Pear Fruit | Tilapia fish (21–25 g) | − | + | + | − | − | [33] |
Pereskia grandifolia extract | Adult male Wistar rats | − | + | + | − | − | [34] |
Opuntia robusta and Opuntia streptacantha fruit juice | Male rats | − | − | + | − | − | [53] |
Nopal dehydrated | Male Zucker rats | + | − | + | − | − | [58] |
Opuntia ficus-indica fruit juice | Male rodents | − | − | + | − | − | [60] |
Opuntia ficus-indica (OFI) fruit seeds | In vivo | + | − | − | + | − | [61] |
Opuntia ficus-indica cladodes | In vivo | + | − | − | + | [62] | |
Aqueous extract of Opuntia ficus-indica cladodes | Male rats | − | − | − | − | − | [63] |
Hydroalcoholic extract of cladodes of Opuntia ficus-indica | Male mice | − | + | − | − | + | [64] |
Opuntia ficus-indica fruit vinegars | Male rats | − | + | + | _ | _ | [65] |
Indicaxanthin from Opuntia ficus-indica | Male rats | + | + | − | − | − | [66] |
Opuntia dillenii seed oil | Male rats | _ | + | + | _ | + | [67] |
Aqueous extract of Opuntia dillenii Haw | Male rats | − | − | − | + | − | [68] |
Opuntia dilleniid fruits | Male rats | + | + | − | − | − | [69] |
Opuntia dillenii polysaccharides | Male mice | − | + | − | − | − | [70] |
Opuntia dillenii polysaccharide | Male mice | − | − | + | − | − | [71] |
Methanolic extract of Pachycereus marginatus cladodes | Female Balb/c mice (22–28 g) | − | + | + | − | + | [72] |
Opuntia ficus indica cladodes juice | Male BalbC mice (20–25 g). | − | + | − | − | + | [73] |
Opuntia ficus-indica cladode juice | BalbC male mice (20–25 g). | − | + | − | − | − | [74] |
Opuntia fícus- indica fruit juice | Male albino mice (25–30 g) | − | + | + | − | + | [75] |
Opuntia ficus-indica cladodes | Male mice (38–40 g) | − | − | + | − | + | [76] |
Opuntia ficus-indica seed oil | C57BL/6 J male mice (12–16 weeks old) | + | + | − | − | − | [77] |
Chloroform or methanol extracts of Opuntia monacantha | Rabbits (1.2–1.5 kg) | − | − | + | − | + | [78] |
Diet supplemented with Opuntia atropes cladodes and Opuntia joconostle fruit flour | Male rats | + | + | + | _ | + | [79] |
Opuntia streptacantha flour | Male rats | − | − | − | + | − | [80] |
Betacyanins from Hylocereus undatus peel | C57BL/6 J male mice (4 weeks old) | − | − | + | + | − | [81] |
Pulp and juice from Hylocereus undulatus fruit | C57BL/6 J male mice (4 weeks old) | − | − | + | + | − | [82] |
Aqueous extract of Pilosocereus gounellei stems | Male rats | + | + | + | + | − | [83] |
Pitaya juice | Male rats | − | − | + | − | − | [84] |
Hylocereus polyrhizus peel extract | Male mice | + | _ | _ | + | _ | [85] |
Pereskia grandifolia leaf flour | Male rats | − | − | − | + | − | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, A.C.A.; Ferreira, F.d.S.; Araújo, J.M.D.d.; Dutra, L.M.G.; Batista, K.S.; Cordeiro, A.M.T.d.M.; Aquino, J.d.S. Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review. Livers 2024, 4, 287-313. https://doi.org/10.3390/livers4020021
Vieira ACA, Ferreira FdS, Araújo JMDd, Dutra LMG, Batista KS, Cordeiro AMTdM, Aquino JdS. Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review. Livers. 2024; 4(2):287-313. https://doi.org/10.3390/livers4020021
Chicago/Turabian StyleVieira, Anne Caroline Alves, Fabrícia de Souza Ferreira, Januse Míllia Dantas de Araújo, Larissa Maria Gomes Dutra, Kamila Sabino Batista, Angela Maria Tribuzy de Magalhães Cordeiro, and Jailane de Souza Aquino. 2024. "Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review" Livers 4, no. 2: 287-313. https://doi.org/10.3390/livers4020021
APA StyleVieira, A. C. A., Ferreira, F. d. S., Araújo, J. M. D. d., Dutra, L. M. G., Batista, K. S., Cordeiro, A. M. T. d. M., & Aquino, J. d. S. (2024). Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review. Livers, 4(2), 287-313. https://doi.org/10.3390/livers4020021