Freeze-Drying as a Stabilization Strategy for Natural Dyes Derived from Lawsonia inermis L. and Indigofera suffruticosa
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical and Biological Material
2.2. Organic Dye Formulation
2.3. Characterization
3. Results and Discussion
3.1. Fourier Transform Infrared (FTIR) Spectrometry Analysis
3.2. Brunauer–Emmett–Teller (BET) Surface Area Analysis
3.3. Cell Viability Evaluation
3.4. Colorimetric Analysis
3.5. Resistance to Ultraviolet Radiation
3.6. Scanning Electron Microscopy (SEM) Analysis
3.7. Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boga, C.; Delpivo, C.; Ballarin, B.; Morigi, M.; Galli, S.; Micheletti, G.; Tozzi, S. Investigation on the dyeing power of some organic natural compounds for a green approach to hair dyeing. Dyes Pigm. 2013, 97, 9–18. [Google Scholar] [CrossRef]
- Seydi, E.; Fatahi, M.; Naserzadeh, P.; Pourahmad, J. The effects of para-phenylenediamine (PPD) on the skin fibroblast cells. Xenobiotica 2019, 49, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Massoni, J. Temporary Hair Dye Composition. US Patent 2004/0055094A1, 25 March 2004. Available online: https://patents.google.com/patent/US7097668B2/en (accessed on 24 March 2024).
- Franca, S.A.; Dario, M.F.; Esteves, V.B.; Baby, A.R.; Velasco, M.V.R. Types of hair dye and their mechanisms of action. Cosmetics 2015, 2, 110–126. [Google Scholar] [CrossRef]
- Rahman Bhuiyan, M.A.; Islam, A.; Ali, A.; Islam, M.N. Color and chemical constitution of natural dye henna (Lawsonia inermis L) and its application in the coloration of textiles. J. Clean. Prod. 2017, 167, 14–22. [Google Scholar] [CrossRef]
- Siva, R. Status of Natural Dyes and Dye-Yielding Plants in India. Curr. Sci. 2007, 92, 916–925. [Google Scholar]
- Cui, H.; Xie, W.; Hua, Z.; Cao, L.; Xiong, Z.; Tang, Y.; Yuan, Z. Recent Advancements in Natural Plant Colorants Used for Hair Dye Applications: A Review. Molecules 2022, 27, 8062. [Google Scholar] [CrossRef]
- Dweck, A.C. Natural ingredients for colouring and styling. Int. J. Cosmet. Sci. 2002, 24, 287–302. [Google Scholar]
- Yusuf, M.; Shahid, M.; Khan, M.I.; Khan, S.A.; Khan, M.A.; Mohammad, F. Dyeing studies with henna and madder: A research on effect of tin (II) chloride mordant. J. Saudi Chem. Soc. 2015, 19, 64–72. [Google Scholar] [CrossRef]
- Chandrakalavathi, T.; Sudha, V.; Sindhuja, M.; Harinipriya, S.; Jeyalakshmi, R. Photosonoelectrochemical analysis of Lawsonia inermis (henna) and artificial dye used in tattoo and dye industry. JPPA 2018, 360, 44–57. [Google Scholar] [CrossRef]
- Dev, V.R.G.; Venugopal, J.; Sudha, S.; Deepika, G.; Ramkrishna, S. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydr. Polym. 2009, 75, 646–650. [Google Scholar] [CrossRef]
- Moutawalli, A.; Benkhouili, F.Z.; Doukkali, A.; Benzeid, H.; Zahidi, A. The biological and pharmacologic actions of Lawsonia inermis L. Phytomed. Plus 2023, 3, 100468. [Google Scholar] [CrossRef]
- Rharbi, S.; Peron, M. Composición que Comprende Henna y/o Índigo, un Aceite y un Sacárido, y Procedimiento de Coloración del Cabello que Usa la Misma. Oficina Española de Patentes y Marcas, WO14174113, 2014. Available online: https://patentimages.storage.googleapis.com/e2/81/8a/ebe61ecba7b26e/ES2711109T3.pdf (accessed on 16 March 2024).
- Hastings, R.B. Medicinal legumes of Mexico: Fabaceae, Papilionoideae, part one. Econ. Bot. 1990, 44, 336–348. [Google Scholar] [CrossRef]
- Arriaga, A.M.C.; Lemos, T.L.G.; Santiago, G.M.P.; Andrade-Neto, M.; Braga, M.A.; de Almeida, M.C.S.; Gomes, T.B.M.; Rodrigues, F.E.A.; Nunes e Vasconcelos, J.; Alves, P.B. Chemical composition and antioxidant activity of Indigofera suffruticosa. Chem. Nat. Compd. 2013, 49, 150–151. [Google Scholar] [CrossRef]
- Campos, J.K.L.; Araújo, T.F.D.S.; Brito, T.G.D.S.; da Silva, A.P.S.; da Cunha, R.X.; Martins, M.B.; da Silva, N.H.; Dos Santos, B.S.; da Silva, C.A.; Lima, V.L.M. Indigofera suffruticosa Mill. (Anil): Plant Profile, Phytochemistry, and Pharmacology Review. Adv. Pharmacol. Sci. 2018, 2018, 8168526. [Google Scholar] [CrossRef]
- Chen, T.Y.; Sun, H.L.; Yao, H.T.; Lii, C.K.; Chen, H.W.; Chen, P.Y.; Li, C.C.; Liu, K.L. Suppressive effects of Indigofera suffruticosa Mill extracts on lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Food Chem. Toxicol. 2013, 55, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Costa Bieski, I.G.; Leonti, M.; Arnason, J.T.; Ferrier, J.; Rapinski, M.; Povoa Violante, I.M.; Olaitan Balogun, S.; Costa Alves Pereira, J.P.; Feguri Figueiredo, R.C.; Araújo Soares Lopes, C.R.; et al. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazi. J. Ethnopharmacol. 2015, 173, 383–423. [Google Scholar] [CrossRef]
- Vásquez, J.; Alarcón, J.C.; Jiménez, S.L.; Jaramillo, G.I.; Gómez-Betancur, I.C.; Rey-Suárez, J.P.; Jaramillo, K.M.; Muñoz, D.C.; Marín, D.M.; Romero, J.O. Main plants used in traditional medicine for the treatment of snake bites n the regions of the department of Antioquia, Colombia. J. Ethnopharmacol. 2015, 170, 158–166. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Maldonado-Miranda, J.J.; Zarate-Martinez, A.; del Rosario Jacobo-Salcedo, M.; Fernández-Galicia, C.; Figueroa-Zuñiga, L.A.; Rios-Reyes, N.A.; de León-Rubio, M.A.; Medellín-Castillo, N.A.; Reyes-Munguia, A.; et al. Medicinal plants used in the Huasteca Potosina, México. J. Ethnopharmacol. 2012, 143, 292–298. [Google Scholar] [CrossRef]
- Luiz-Ferreira, A.; Cola, M.; Barbastefano, V.; Farias-Silva, E.; Calvo, T.R.; Albino de Almeida, A.B.; Pellizzon, C.H.; Hiruma-Lima, C.A.; Vilegas, W.; Souza-Brito, A.R.M. Indigofera suffruticosa Mill as new source of healing agent: Involvement of prostaglandin and mucus and heat shock proteins. J. Ethnopharmacol. 2011, 137, 192–198. [Google Scholar] [CrossRef]
- Nascimento, W.M.; Saturnino Oliveira, J.R.; Cunha, R.X.; Rodrigues Gambôa, D.S.; Sant’Anna Silva, A.P.; de Menezes Lima, V.L. Evaluation of the treatment of fever, pain and inflammation with Indigofera suffruticosa Miller Leaves Aqueous Extract. J. Ethnopharmacol. 2022, 287, 114958. [Google Scholar] [CrossRef]
- Mishra, D.N.; Gomare, K.S.; Sheelwant, S.V. GC-MS Analysis and Phytochemical Screening of Indigofera tinctoria (Linn.) Leaf Extract Characterizing its Medicinal Use. IJAM 2020, 11, 289–299. [Google Scholar] [CrossRef]
- Chavan, R.B. Indigo dye and reduction techniques. In Denim. Manufacture, Finishing and Applications (37–67). Editorial; Roshan, P., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Rivera Yerena, H.H.; Louvier Hernández, J.F.; García Rodríguez, F.J.; Serrano Medrano, L.; Pérez, E.; Patiño-Herrera, R. Approaching the most intense reddish yellow tone of praseodymium doped zircon pigment. J. Solid State Chem. 2021, 297, 122084–122097. [Google Scholar] [CrossRef]
- Ayala-Jara, C.I.; Castillo Saavedra, E.F.; Alfaro Avalos, K.Y.; Aspiros Freyre, E.d.P.; Seclén Ayala, L.E. Desarrollo de un tinte cosmético a base de semilla de Bixa orellana L. (Bixaceae) y evaluación de su efecto in vitro. Sci. Agropecu. 2018, 9, 133–141. [Google Scholar] [CrossRef]
- NORMA Oficial Mexicana. NOM-073-SSA1-2015 Estabilidad de Fármacos y Medicamentos, así Como de Remedios Herbolarios, (8.5.3). 2015. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5440183&fecha=07/06/2016#gsc.tab=0 (accessed on 8 January 2024).
- Delgado, M.L.; Andrade, J.A.; Ramírez, C.A. Physical-chemical description of propolis collected in La Primavera forest, Zapopan, Jalisco state. Rev. Mex. Cienc. For. 2015, 6, 74–87. [Google Scholar]
- Kapoor, N.; Kandwal, P.; Sharma, G.; Gambhir, L. Redox ticklers and beyond: Naphthoquinone repository in the spotlight against inflammation and associated maladies. Pharmacol. Res. 2021, 174. [Google Scholar] [CrossRef]
- Gallo, F.R.; Multaria, G.; Palazzinoa, G.; Pagliucaa, G.; Majid Majd Zadehb, S.; Cabral Nya Biapac, P.; Nicolettid, M. Henna through the centuries: A quick HPTLC analysis proposal to check henna identity. Rev. Bras. Farmacogn. 2014, 24, 133–140. [Google Scholar] [CrossRef]
- Clark, R.J.; Cooksey, C.J.; Daniels, M.A.; Withnall, R. Indigo, woad, and Tyrian Purple: Important vat dyes from antiquity to the present. Endeavour 1993, 17, 191–199. [Google Scholar] [CrossRef]
- Di Foggia, M.; Taddei, P.; Boga, C.; Nocentini, B.; Micheletti, G. Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study. Molecules 2024, 29, 320. [Google Scholar] [CrossRef]
- Kuzuhara, A.; Hori, T. Reduction mechanism of thioglycolic acid on keratin fibers using microspectrophotometry and FT-Raman spectroscopy. Polymer 2003, 44, 7963–7970. [Google Scholar] [CrossRef]
- Breakspear, S.; Smith, J.R.; Luengo, G. Efect of the covalently linked fatty acid 18-MEA on the nanotribology oof hair’s outermost surface. J. Struct. Biol. 2005, 149, 235–242. [Google Scholar] [CrossRef]
- Nishida, Y.; Ito, T.; Hosokawa, M.; Aono, M.; Yokomaku, A.; Konta, H.; Imura, K.; Kato, T.; Sugiyama, K. Repairing effects of diglucosyl gallic acid on coloring-damaged hair. J. Oleo Sci. 2004, 53, 295–304. [Google Scholar]
- Kwon, S.; Lee, S.; Jang, J.; Lee, J.B.; Kim, K.S. Quantifying the effects of repeated dyeing: Morphological, mechanical, and chemical changes in human hair fibers. Heliyon 2024, 10, e37871. [Google Scholar] [CrossRef]
- Sargsyan, L.; Vill, V.; Hippe, T. Investigations of vegetable tannins as hair dyes and their interactions with pre-bleached hair fibres. Int. J. Cosmet. Sci. 2020, 42, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Tapia, A.; Gonzalez-Guerra, E. Hair Cosmetics: Dye. Actas Dermo-Sifiliográficas 2014, 105, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Oh, S.H.; Chang, B.S. Effects of excessive bleaching on hair: Comparative analysis of external morphology and internal microstructure. Appl. Microsc. 2024, 54, 11. [Google Scholar] [CrossRef]
- Rodríguez, G.J.; Patiño-Herrera, R.; Zavala-Alonso, V.; Armendáriz-Alonso, E.F.; Cruz-Guerrero, R.; Pérez, E. Enhanced chitosan and Carboxymethylcellulose scaffolds with natural fiber reinforcement for hernia repair meshes. J. Appl. Polym. Sci. 2024, 142, e56326. [Google Scholar] [CrossRef]
- Tafurt-Cardona, Y.; Suares-Rocha, P.; Silva, B.O.; Moraes, K.C.M.; Marin-Morales, M.A. Toxic effects of Arianor Ebony hair dye on human cells. Braz. J. Med. Biol. Res. 2023, 56, e12777. [Google Scholar] [CrossRef]
- Chua-Gocheco, A.; Bozzo, P.; Einarson, A. Safety of hair products during pregnancy. CFP 2008, 54, 1386–1388. [Google Scholar]
- Kondle, R.; Pathapati, R.; Saginela, S.; Malliboina, S.; Makineedi, V. Clinical profile and outcomes of hair dye poisoning in a teaching Hospital in Nellore. Int. Sch. Res. Not. 2012, 2012, 1–5. [Google Scholar] [CrossRef]
- Hessefort, Y.; Holland, B.T.; Cloud, R.W. True porosity measurement of hair: A new way to study hair damage mechanisms. J. Cosmet. Sci. 2008, 59, 303–315. [Google Scholar]
- Kim, Y.D.; Jeon, S.Y.; Ji, J.H.; Lee, W.S. Development of a classification system for extrinsic hair damage: Standard grading of electron microscopic findings of damaged hairs. Am. J. Dermatopathol. 2010, 32, 432–438. [Google Scholar] [PubMed]
- Ji, J.H.; Park, T.S.; Lee, H.J.; Kim, Y.D.; Pi, L.Q.; Jin, X.H.; Lee, W.S. The ethnic differences of the damage of hair and integral hair lipid after ultraviolet radiation. Ann. Dermatol. 2013, 25, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Lintong, Z.; Man, Q.; Cho, Y.I. Deep-Learning-Based Hair Damage Diagnosis Method Applying Scanning Electron Microscopy Images. Diagnostics 2021, 11, 1831. [Google Scholar] [CrossRef]
- Vazquez Villa, A.L.; Senrra Aragão, M.R.; Pereira Dos Santos, E.; Mazotto, A.M.; Zingali, R.B.; Paraguai de Souza, E.; Vermelho, A.B. Feather keratin hydrolysates obtained from microbial keratinases: Effect on hair fiber. BMC Biotechnol. 2013, 13, 15. [Google Scholar]
- Nail, S.L.; Akers, M.J. Development and Manufacture of Protein Pharmaceuticals. Fundamentals of Freeze-Drying. Pharm. Biotechnol. 2002, 14, 281–360. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) |
---|---|
Gray hair | 0.4550 |
Dyed gray hair | 0.5981 |
Discolored hair | 0.4182 |
Dyed discolored hair | 0.2276 |
Dye | Wash | L | a | b | ∆E | Photographs | Optical Micrographs (Magnification: 100×) |
---|---|---|---|---|---|---|---|
Discolored hair | 46.01 | 12.75 | 29.43 | --- | |||
First application | 1 | 20.6 | 0.99 | 1.61 | 39.47 | ||
5 | 21 | 0.95 | 1.55 | 39.26 | |||
10 | 21.20 | 1.20 | 1.84 | 38.86 | |||
15 | 21.54 | 1.31 | 2.07 | 38.45 | |||
Second application | 1 | 18.45 | 0.11 | 0.83 | 41.68 | ||
5 | 18.68 | −0.25 | 0.97 | 41.54 | |||
10 | 19.73 | −0.51 | 1.20 | 40.78 | |||
15 | 20.43 | −0.82 | 1.03 | 40.56 | |||
Third application | 1 | 17.72 | −0.76 | 0.50 | 42.66 | ||
5 | 18.16 | −0.68 | 0.46 | 42.37 | |||
10 | 18.54 | −0.66 | 0.52 | 42.07 | |||
15 | 18.77 | −0.64 | 0.57 | 41.88 | |||
Gray hair | 85.54 | 1.01 | 14.33 | --- | |||
First application | 1 | 22.72 | 1.35 | 1.99 | 64.06 | ||
5 | 22.9 | 1.15 | 2.05 | 63.86 | |||
10 | 23.15 | 0.9 | 2.34 | 63.56 | |||
15 | 23.22 | 0.06 | 2.57 | 63.42 | |||
Second application | 1 | 20.15 | 1.12 | 0.13 | 66.95 | ||
5 | 20.85 | 0.99 | 0.38 | 66.20 | |||
10 | 20.98 | 0.42 | 0.47 | 66.04 | |||
15 | 21.23 | 0.35 | 0.54 | 65.79 | |||
Third application | 1 | 17.51 | 1.78 | −1.16 | 69.83 | ||
5 | 17.79 | 1.66 | −0.69 | 69.44 | |||
10 | 18.15 | 1.25 | −0.53 | 69.04 | |||
15 | 18.97 | 0.94 | −0.38 | 68.20 |
Sample | UV Radiation Time (h) | L | a | b | ∆E | Photographs | Optical Micrographs (Magnification: 100×) |
---|---|---|---|---|---|---|---|
Discolored hair | 0 | 46.01 | 12.75 | 29.43 | --- | ||
200 | 46.52 | 14.82 | 22.46 | 7.29 | |||
400 | 58.32 | 7.51 | 24.62 | 14.22 | |||
720 | 64.84 | 6.77 | 26.59 | 19.96 | |||
Dyed discolored hair | 0 | 18.77 | −0.64 | 0.57 | --- | ||
200 | 19.04 | 0.33 | 0.21 | 1.07 | |||
400 | 19.74 | −0.51 | −0.37 | 1.36 | |||
720 | 20.15 | −0.24 | 0.46 | 1.44 | |||
Gray hair | 0 | 85.54 | −1.01 | 14.33 | --- | ||
200 | 86.94 | −2.31 | 4.58 | 9.93 | |||
400 | 88.73 | 2.39 | 3.19 | 12.08 | |||
720 | 84.80 | 5.30 | −1.80 | 17.34 | |||
Dyed gray hair | 0 | 18.97 | 0.94 | −0.38 | --- | ||
200 | 19.87 | 0.36 | 0.29 | 1.07 | |||
400 | 19.58 | −0.22 | 0.49 | 1.57 | |||
720 | 20.80 | −1.00 | 0.9 | 2.96 |
Temperature (°C) | Day | Final Weight (g) | Colorimetric Parameters | |||
---|---|---|---|---|---|---|
ΔE (1) | ΔE (2) | ΔE (3) | Average ΔE | |||
40 | 0 | 0.5 | ||||
40 | 1 | 0.5 | 1.37 | 1.36 | 1.41 | 1.38 ± 0.02 |
40 | 2 | 0.48 | 1.52 | 1.36 | 1.36 | 1.42 ± 0.09 |
40 | 3 | 0.49 | 1.36 | 1.45 | 1.36 | 1.39 ± 0.05 |
40 | 4 | 0.49 | 1.48 | 1.45 | 1.38 | 1.44 ± 0.04 |
40 | 5 | 0.49 | 1.45 | 1.52 | 1.52 | 1.50 ± 0.03 |
40 | 6 | 0.49 | 1.42 | 1.42 | 1.38 | 1.41 ± 0.02 |
40 | 7 | 0.49 | 1.42 | 1.49 | 1.42 | 1.44 ± 0.04 |
40 | 8 | 0.49 | 1.42 | 1.49 | 2.01 | 1.64 ± 0.32 |
40 | 9 | 0.49 | 1.52 | 1.36 | 1.36 | 1.42 ± 0.09 |
40 | 10 | 0.49 | 1.36 | 1.45 | 1.36 | 1.39 ± 0.05 |
40 | 15 | 0.49 | 1.42 | 1.42 | 1.38 | 1.41 ± 0.02 |
40 | 30 | 0.49 | 1.42 | 1.49 | 1.42 | 1.44 ± 0.03 |
5 | 0 | 0.5 | ||||
5 | 1 | 0.49 | 1.60 | 1.66 | 1.63 | 1.63 ± 0.03 |
5 | 2 | 0.49 | 1.54 | 1.65 | 1.65 | 1.61 ± 0.06 |
5 | 3 | 0.49 | 1.60 | 1.59 | 1.59 | 1.59 ± 0.01 |
5 | 4 | 0.49 | 1.53 | 1.59 | 1.57 | 1.56 ± 0.02 |
5 | 5 | 0.49 | 1.63 | 2.18 | 1.57 | 1.79 ± 0.33 |
5 | 6 | 0.49 | 2.26 | 1.56 | 1.50 | 1.78 ± 0.42 |
5 | 7 | 0.49 | 1.55 | 1.49 | 1.55 | 1.53 ± 0.03 |
5 | 8 | 0.49 | 1.45 | 1.55 | 1.55 | 1.52 ± 0.05 |
5 | 9 | 0.49 | 1.55 | 1.51 | 1.51 | 1.52 ± 0.02 |
5 | 10 | 0.49 | 1.55 | 1.44 | 1.55 | 1.51 ± 0.06 |
5 | 15 | 0.48 | 1.49 | 1.49 | 1.55 | 1.51 ± 0.03 |
5 | 30 | 0.49 | 1.42 | 1.49 | 1.42 | 1.44 ± 0.03 |
25 | 0 | 0.5 | ||||
25 | 1 | 0.498 | 1.605 | 1.665 | 1.635 | 1.63 ± 0.03 |
25 | 2 | 0.499 | 1.547 | 1.654 | 1.654 | 1.61 ± 0.06 |
25 | 4 | 0.495 | 1.607 | 1.594 | 1.594 | 1.59 ± 0.01 |
25 | 6 | 0.499 | 1.538 | 1.594 | 1.573 | 1.56 ± 0.02 |
25 | 8 | 0.491 | 1.634 | 2.186 | 1.579 | 1.79 ± 0.33 |
25 | 10 | 0.494 | 2.266 | 1.56 | 1.508 | 1.77 ± 0.42 |
25 | 15 | 0.499 | 1.557 | 1.497 | 1.557 | 1.53 ± 0.03 |
25 | 30 | 0.498 | 1.458 | 1.557 | 1.557 | 1.52 ± 0.05 |
25 | 60 | 0.498 | 1.494 | 1.494 | 1.555 | 1.51 ± 0.03 |
25 | 90 | 0.498 | 1.555 | 1.443 | 1.555 | 1.51 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cahuantzi, V.; Patiño Herrera, R.; Zavala Alonso, N.V.; Salado Leza, D.; Berber Mendoza, M.S.; Pérez, E. Freeze-Drying as a Stabilization Strategy for Natural Dyes Derived from Lawsonia inermis L. and Indigofera suffruticosa. Analytica 2025, 6, 22. https://doi.org/10.3390/analytica6030022
Cahuantzi V, Patiño Herrera R, Zavala Alonso NV, Salado Leza D, Berber Mendoza MS, Pérez E. Freeze-Drying as a Stabilization Strategy for Natural Dyes Derived from Lawsonia inermis L. and Indigofera suffruticosa. Analytica. 2025; 6(3):22. https://doi.org/10.3390/analytica6030022
Chicago/Turabian StyleCahuantzi, Valvanuz, Rosalba Patiño Herrera, Norma Verónica Zavala Alonso, Daniela Salado Leza, María Selene Berber Mendoza, and Elías Pérez. 2025. "Freeze-Drying as a Stabilization Strategy for Natural Dyes Derived from Lawsonia inermis L. and Indigofera suffruticosa" Analytica 6, no. 3: 22. https://doi.org/10.3390/analytica6030022
APA StyleCahuantzi, V., Patiño Herrera, R., Zavala Alonso, N. V., Salado Leza, D., Berber Mendoza, M. S., & Pérez, E. (2025). Freeze-Drying as a Stabilization Strategy for Natural Dyes Derived from Lawsonia inermis L. and Indigofera suffruticosa. Analytica, 6(3), 22. https://doi.org/10.3390/analytica6030022