The contamination of food and beverages with heavy metals, such as Cd, presents significant health risks, underscoring the need for reliable and sensitive analytical methods. This study introduces the development of a rapid, cost-effective, and environmentally friendly method for Cd determination in cachaça,
[...] Read more.
The contamination of food and beverages with heavy metals, such as Cd, presents significant health risks, underscoring the need for reliable and sensitive analytical methods. This study introduces the development of a rapid, cost-effective, and environmentally friendly method for Cd determination in cachaça, a traditional Brazilian sugarcane spirit. Magnetic nanoparticles (Fe
3O
4) functionalized with tetraethyl orthosilicate are synthesized and employed as adsorbents in a dispersive magnetic solid-phase extraction procedure. The extracted Cd is quantified using flame atomic absorption spectrometry. A full factorial experimental design is used to optimize key parameters, including the sorbent mass, adsorption time, desorption time, and acid concentration. The method demonstrates excellent analytical performance, with a linear calibration range (R
2 = 0.99), detection limit of 0.0046 mg L
−1, and quantification limit of 0.0200 mg L
−1. Moreover, validation results show high precision (coefficient of variation < 9.10%) and accuracy (recovery rates between 92.00% and 120.00%). When analyzing commercial cachaça samples, cadmium was detected in all five specimens. Notably, in one sample the cadmium concentration exceeded Brazil’s maximum permissible limit of 0.0200 mg kg
−1, underscoring the importance of this work for ensuring food safety. The proposed method offers a sensitive, reproducible, and sustainable approach for analysis of potentially toxic trace metals in alcoholic beverages, reinforcing its potential for routine monitoring and regulatory compliance.
Full article