Diet Supplementation with Rosemary (Rosmarinus officinalis L.) Leaf Powder Exhibits an Antidiabetic Property in Streptozotocin-Induced Diabetic Male Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Authentication
2.2. Preparation of Plant Materials
2.3. Spectrophotometric Quantification of Phytochemical Content in the Crude Extract
2.3.1. Estimation of Total Phenolic Content (TPC)
2.3.2. Estimation of Total Flavonoid Content (TFC)
2.3.3. Estimation of Total Tannin Content (TTC)
2.4. Antioxidant Activity
2.5. Ethical Clearance and Animal Husbandry
2.6. Preparation of R. officinalis Leaf Powder (ROP)-Supplemented Diet
2.7. Induction of Diabetes in Experimental Rats by Use of Streptozotocin (STZ)
2.8. Experimental Design and Animal Treatment Groups
2.9. Measurement of Fasting Blood Glucose (FBG) Level
2.10. Determination of Relative Organ Weights
2.11. Measurement of Biochemical Parameters (Serum Liver Enzymes and Lipid Profile)
2.12. Statistical Analysis
3. Results
3.1. Phytochemical Content and Antioxidant Activity of R. officinalis Aqueous Extracts
3.2. Effect of ROP Supplementation on Food Intake, Body Weight, and Relative Organ Masses
3.3. Effect of ROP Supplementation on Fasting Blood Glucose Levels
3.4. Effect of Diet Supplemented with ROP on Liver and Renal Serum Biomarkers of Treated Animal Groups
3.5. Effect of Diet Supplemented with ROP on Lipid Profile of Experimental Animal Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018, 107, 306–328. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. International Diabetes Federation (IDF) Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 1 September 2023).
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; De Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–322. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef]
- Taylor, S.I. The High Cost of Diabetes Drugs: Disparate Impact on the Most Vulnerable Patients. Diabetes Care 2020, 43, 2330–2332. [Google Scholar] [CrossRef]
- Gakuya, D.W.; Okumu, M.O.; Kiama, S.G.; Mbaria, J.M.; Gathumbi, P.K.; Mathiu, P.M. Traditional medicine in Kenya: Past and current status, challenges, and the way forward. Sci. Afr. 2020, 1, e00360. [Google Scholar] [CrossRef]
- Dyson, P.A.; Twenefour, D.; Breen, C.; Duncan, A.; Elvin, E.; Goff, L.; Hill, A.; Kalsi, P.; Marsland, N.; McArdle, P.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 2018, 35, 541–547. [Google Scholar] [CrossRef]
- Ndisang, J.F.; Vannacci, A.; Rastogi, S. Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. J. Diabetes Res. 2017, 2017, 1478294. [Google Scholar] [CrossRef]
- Bao, T.Q.; Li, Y.; Qu, C.; Zheng, Z.G.; Yang, H.; Li, P. Antidiabetic Effects and Mechanisms of Rosemary (Rosmarinus officinalis L.) and its Phenolic Components. Am. J. Chin. Med. 2020, 48, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Kamli, M.R.; Sharaf, A.A.M.; Sabir, J.S.M.; Rather, I.A. Phytochemical Screening of Rosmarinus officinalis L. as a Potential Anticholinesterase and Antioxidant–Medicinal Plant for Cognitive Decline Disorders. Plants 2022, 11, 514. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–74. [Google Scholar]
- De Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (Rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 9, 26. [Google Scholar] [CrossRef]
- Rahbardar, M.G.; Hosseinzadeh, H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran. J. Basic Med. Sci. 2020, 23, 1100. [Google Scholar]
- Veenstra, J.P.; Johnson, J.J. Rosemary (Salvia rosmarinus): Health-promoting benefits and food preservative properties. Int. J. Nutr. 2021, 6, 1. [Google Scholar] [CrossRef]
- Aguilar, F.; Herman, A.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Engel, K. Use of rosemary extracts as a food additive-scientific opinion of the panel on food additives, flavorings, processing aids and materials in contact with food. EFSA J. 2008, 6, 72. [Google Scholar]
- Soliman, G.Z.A. Effect of Rosmarinus Officinalis on Lipid Profile of Streptozotocin-Induced Diabetic Rats. Egypt. J. Hosp. Med. 2013, 53, 809–815. [Google Scholar] [CrossRef]
- Labban, L.; Mustafa, U.E.S.; Ibrahim, Y.M. The Effects of Rosemary (Rosmarinus officinalis) Leaves Powder on Glucose Level, Lipid Profile and Lipid Perodoxation. Int. J. Clin. Med. 2014, 5, 297–304. [Google Scholar] [CrossRef]
- Naimi, M.; Vlavcheski, F.; Shamshoum, H.; Tsiani, E. Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives. Nutrients 2017, 9, 968. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed]
- Adan, A.A.; Ojwang, R.A.; Muge, E.K.; Mwanza, B.K.; Nyaboga, E.N. Phytochemical composition and essential mineral profile, antioxidant and antimicrobial potential of unutilized parts of jackfruit. Food Res. 2020, 4, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Kimondo, J.M.; Agea, J.G.; Okia, C.A.; Abohassan, R.A.; Ndeunyema, E.T.; Woiso, D.A. Physiochemical and nutritional characterization of Vitex payos (Lour.) Merr. (Verbenaceae): An indigenous fruit tree of Eastern Africa. J. Hortic. For. 2012, 5, 161–168. [Google Scholar]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Limas, C.P.; Macías, P.C.; Estrella, A.; Maffioli, P. Dietary and nutraceutical approach to type 2 diabetes. Arch. Med. Sci. AMS 2014, 10, 336–344. [Google Scholar] [CrossRef]
- Nimesh, S.; Ashwlayan, V.D. Nutraceuticals in the management of diabetes mellitus. Pharm. Pharmacol. Int. J. 2018, 6, 114–120. [Google Scholar]
- Shi, J.; Hu, H.; Harnett, J.; Zheng, X.; Liang, Z.; Wang, Y.T. An evaluation of randomized controlled trials on nutraceuticals containing traditional Chinese medicines for diabetes management: A systematic review. Chin. Med. 2019, 14, 54. [Google Scholar] [CrossRef]
- Hassani, F.V.; Shirani, K.; Hosseinzadeh, H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review. Naunyn Schmiedebergs Arch. Pharmacol. 2016, 389, 931–949. [Google Scholar] [CrossRef]
- Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab. 2015, 12, 60. [Google Scholar] [CrossRef]
- AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Ajebli, M.; Eddouks, M. The Promising Role of Plant Tannins as Bioactive Antidiabetic Agents. Curr. Med. Chem. 2019, 26, 4852–4884. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, H.; Heidari, R.; Nejati, V.; Ilkhanipoor, M. Effects of Aqueous Extract of Berberis integerrima Root on Some Physiological Parameters in Streptozotocin-Induced Diabetic Rats. Iran. J. Pharm. Res. IJPR 2013, 12, 425–434. [Google Scholar] [PubMed]
- Hegazy, A.; Abdel-Azeem, A.; Zeidan, H.; Ibrahim, K.; Sayed, E.E. Hypolipidemic and hepatoprotective activities of rosemary and thyme in gentamicin-treated rats. Hum. Exp. Toxicol. 2018, 37, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Dickmann, L.J.; VandenBrink, B.M.; Lin, Y.S. In vitro hepatotoxicity and cytochrome P450 induction and inhibition characteristics of carnosic acid, a dietary supplement with antiadipogenic properties. Drug Metab. Dispos. Biol. Fate Chem. 2012, 40, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Gaya, M.; Repetto, V.; Toneatto, J.; Anesini, C.; Piwien-Pilipuk, G.; Moreno, S. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim. Biophys. Acta BBA Gen. Subj. 2013, 1830, 3796–3806. [Google Scholar] [CrossRef] [PubMed]
- Stefanon, B.; Pomari, E.; Colitti, M. Effects of Rosmarinus officinalis extract on human primary omental preadipocytes and adipocytes. Exp. Biol. Med. 2015, 1, 240. [Google Scholar] [CrossRef] [PubMed]
- Noori, N.; Kopple, J.D. Effect of Diabetes Mellitus on Protein–Energy Wasting and Protein Wasting in End-Stage Renal Disease. Semin. Dial. 2010, 23, 178–184. [Google Scholar] [CrossRef]
- White, N.H. Long-term Outcomes in Youth with Diabetes Mellitus. Pediatr. Clin. N. Am. 2015, 62, 889–909. [Google Scholar] [CrossRef]
- Hahn, M.; van Krieken, P.P.; Nord, C.; Alanentalo, T.; Morini, F.; Xiong, Y. Topologically selective islet vulnerability and self-sustained downregulation of markers for β-cell maturity in streptozotocin-induced diabetes. Commun. Biol. 2020, 3, 541. [Google Scholar] [CrossRef]
- Ibarra, A.; Cases, J.; Roller, M.; Chiralt-Boix, A.; Coussaert, A.; Ripoll, C. Carnosic acid-rich rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and improves cholesterol levels and glycaemia in mice on a high-fat diet. Br. J. Nutr. 2011, 106, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Aljamal, A.; Alqadi, T. Effects of Rosemary (Rosmarinus officinalis) on Lipid Profile of Diabetic Rats. Jordan J. Biol. Sci. 2011, 4, 199–204. [Google Scholar]
- Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M. Hypolipidemic effects of Rosmarinus officinalis L. J. Cell. Physiol. 2019, 234, 14680–14688. [Google Scholar] [CrossRef]
- Zheng, T.; Hao, X.; Wang, Q.; Chen, L.; Jin, S.; Bian, F. Entada phaseoloides extract suppresses hepatic gluconeogenesis via activation of the AMPK signaling pathway. J. Ethnopharmacol. 2016, 193, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Zilov, A.V.; Abdelaziz, S.I.; AlShammary, A.; Al Zahrani, A.; Amir, A.; Assaad Khalil, S.H.; Brand, K.; Elkafrawy, N.; Hassoun, A.A.K.; Jahed, A.; et al. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab. Res. Rev. 2019, 35, e3173. [Google Scholar] [CrossRef]
- Ahmed, Q.U.; Dogarai, B.B.; Amiroudine MZ, A.M.; Taher, M.; Latip, J.; Umar, A.; Muhammad, B.Y. Antidiabetic activity of the leaves of Tetraceraindica Merr. (Dilleniaceae) in vivo and in vitro. J. Med. Plants Res. 2012, 6, 5912–5922. [Google Scholar]
- Granados, S.; Balcázar, N.; Guillén, A.; Echeverri, F. Evaluation of the hypoglycemic effects of flavonoids and extracts from Jatropha gossypifolia L. Molecules 2015, 20, 6181–6193. [Google Scholar] [CrossRef]
- Li, J.; Gong, F.; Li, F. Hypoglycemic and hypolipidemic effects of flavonoids from tartary buckwheat in type 2 diabetic rats. Biomed. Res. 2016, 27, 132–137. [Google Scholar]
- Bansal, P.; Paul, P.; Mudgal, J.; Nayak, P.G.; Pannakal, S.T.; Priyadarsini, K.I.; Unnikrishnan, M.K. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pileamicrophylla L. in high fat diet/streptozotocin-induced diabetes in mice. Exp. Toxicol. Pathol. 2012, 64, 651–658. [Google Scholar] [CrossRef]
- Jadhav, R.; Puchchakayala, G. hypoglycemic and Antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Int. J. Pharm. Pharm. Sci. 2012, 4, 251–256. [Google Scholar]
- Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozotocin-induced diabetic rats. Compar. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 135, 57–64. [Google Scholar]
- Gupta, R.K.; Kumar, D.; Chaudhary, A.K.; Maithani, M.; Singh, R. Antidiabetic activity of Passiflora incarnata L. in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 2012, 139, 801–806. [Google Scholar] [CrossRef]
- Verma, P.R.; Itankar, P.R.; Arora, S.K. Evaluation of Antidiabetic antihyperlipidemic and pancreatic regeneration, potential of aerial parts of Clitoria ternatea. Rev. Bras. Farmacogn. 2013, 23, 819–829. [Google Scholar] [CrossRef]
- Baragob, A.E.; Al-Wabel, N.A.; Ahmed, N.A.; Babiker, M.F.; Abdalkarim, A.S.; Elboshra, M.I. Study to investigate the pancreatic regeneration and evaluation of the antidiabetic and antihyperlipidemic potential of aerial parts of Allium cepa. Biochem. Biotechnol. Res. 2013, 3, 19–29. [Google Scholar]
- Jayanthy, G.; Subramanian, S. Rosmarinic acid, a polyphenol, ameliorates hyperglycemia by regulating the key enzymes of carbohydrate metabolism in high fat diet–STZ induced experimental diabetes mellitus. Biomed. Prev. Nutr. 2014, 4, 431–437. [Google Scholar] [CrossRef]
- Bensellam, M.; Laybutt, D.R.; Jonas, J.C. The molecular mechanisms of pancreatic b-cell glucotoxicity: Recent findings and future research directions. Mol. Cell. Endocrinol. 2012, 364, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Yogesha, M.; Grace Nirmala, J.; Narendhirakannan, R.T. Antidiabetic and antioxidant properties of Triticum aestivum in streptozotocin induced diabetic rats. Adv. Pharmacol. Sci. 2013, 2013, 716073. [Google Scholar]
- Preethi, K.C.; Kuttan, R. Hepato and reno protective action of Calendula officinalis L. flower extract. Indian. J. Exp. Biol. 2009, 47, 163–168. [Google Scholar]
- Abedimanesh, N.; Asghari, S.; Mohammadnejad, K.; Daneshvar, Z.; Rahmani, S.; Shokoohi, S. The anti-diabetic effects of betanin in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. Nutr. Metab. 2021, 18, 1–13. [Google Scholar] [CrossRef]
- Mohamed, W.A.; Abd-Elhakim, Y.M.; Farouk, S.M. Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits. Exp. Toxicol. Pathol. 2016, 68, 451–461. [Google Scholar] [CrossRef]
- Yang, M.; Yin, Y.; Wang, F.; Bao, X.; Long, L.; Tan, B. Effects of dietary rosemary extract supplementation on growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning pigs. J. Anim. Sci. 2021, 99, skab237. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, K.S.; Khalil, O.A.; Danial, E.N.; Alnahdi, H.S.; Ayaz, N.O. Hypoglycemic and hepatoprotective activity of Rosmarinus officinalis extract in diabetic rats. J. Physiol. Biochem. 2013, 69, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Noroozi Karimabad, M.; Khalili, P.; Ayoobi, F.; Esmaeili-Nadimi, A.; La Vecchia, C.; Jamali, Z. Serum liver enzymes and diabetes from the Rafsanjan cohort study. BMC Endocr. Disord. 2022, 22, 127. [Google Scholar] [CrossRef] [PubMed]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, J.; Yang, S.; Cui, S.W.; Wang, M.; Hao, W. Rosemary extract reverses oxidative stress through activation of Nrf2 signaling pathway in hamsters fed on high fat diet and HepG2 cells. J. Funct. Foods. 2020, 74, 104136. [Google Scholar] [CrossRef]
- Vazquez-Benitez, G.; Desai, J.R.; Xu, S.; Goodrich, G.K.; Schroeder, E.B.; Nichols, G.A. Preventable major cardiovascular events associated with uncontrolled glucose, blood pressure, and lipids and active smoking in adults with diabetes with and without cardiovascular disease: A contemporary analysis. Diabetes Care 2015, 38, 905–912. [Google Scholar] [CrossRef]
- Ji, X.; Shi, S.; Liu, B.; Shan, M.; Tang, D.; Zhang, W. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed. Pharmacother. 2019, 118, 109338. [Google Scholar] [CrossRef]
- Hunter, P.M.; Hegele, R.A. Functional foods and dietary supplements for the management of dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13, 278–288. [Google Scholar] [CrossRef]
- Arii, K.; Suehiro, T.; Yamamoto, M.; Ito, H.; Hashimoto, K. Suppression of plasma cholesteryl ester transfer protein activity in acute hyperinsulinemia and effect of plasma nonesterified fatty acid. Metabolism 1997, 46, 1166–1170. [Google Scholar] [CrossRef]
- Martín-Pardillos, A.; Martin-Duque, P. Cellular Alterations in Carbohydrate and Lipid Metabolism Due to Interactions with Nanomaterials. J. Funct. Biomater. 2023, 14, 274. [Google Scholar] [CrossRef]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef] [PubMed]
Group | Label | Treatment/Dosage | No. of Animals (n) |
---|---|---|---|
1 | Normal control (NC) | Normal diet | 6 |
2 | Non-diabetic mellitus animals (NDM-ROP6) | Normal diet with 6% ROP | 6 |
3 | Diabetic mellitus animals (DM-ROP3) | Normal diet with 3% with ROP | 6 |
4 | Diabetic mellitus animals (DM-ROP6) | Normal diet with 6% ROP | 6 |
5 | Diabetic mellitus animals (DM-ROP12) | Normal diet with 12% ROP | 6 |
6 | Diabetic mellitus control (DMC) | Normal diet | 6 |
Treatment | Week 1 (g) | Week 6 (g) | Weight Difference | % Weight Difference |
---|---|---|---|---|
NC | 42.4 ± 1.2 | 47.3 ± 1.3 | 4.9 ± 1.8 | 11.6 a |
NDM-ROP6 | 42.2 ± 3.0 | 45.2 ± 1.6 | 3.0 ± 2.3 | 7.1 a |
DM-ROP3 | 38.7 ± 0.9 | 41.8 ± 3.1 | 3.1 ± 1.4 | 8.0 a |
DM-ROP6 | 38.8 ± 1.1 | 42.5 ± 0.8 | 3.7 ± 0.9 | 9.5 a |
DM-ROP12 | 39.9 ± 1.2 | 43.5 ± 2.2 | 3.6 ± 2.6 | 9.0 a |
DMC | 38.5 ± 2.3 | 16.5 ±1.8 | −22 ± 1.9 | 57.1 b |
Animal Treatment Groups | |||||||
---|---|---|---|---|---|---|---|
NC | NDM-ROP6 | DM-ROP3 | DM-ROP6 | DM-ROP12 | DMC | ||
Body weights at initial and after 42 days | Day 0 | 156.04 ± 3.7 | 164.14 ± 3.2 | 154.94 ± 2.7 | 163.2 ± 3.4 | 156.18 ± 2.8 | 173 ± 6.0 |
Day 42 | 198 ± 4.6 | 195.92 ± 5.6 | 165.36 ± 10.3 | 230.82 ± 8.9 | 184.88 ± 3.4 | 147.86 ± 7.7 | |
Weight difference (g) | 42.0 ± 2.8 | 31.8 ± 3.7 | 10.4 ± 2.9 | 27.6 ± 5.0 | 24.7 ± 4.1 | 25.1 ± 6.1 ↓ | |
%Weight difference | 26.9 ↑ | 19.4 ↑ | 6.7 ↑ | 16.9 ↑ | 15.4 ↑ | 14.5 ↓ | |
Relative internal organ weights (g/100 g) | Liver | 3.28 ± 0.13 | 3.20 ± 0.12 | 4.68 ± 0.56 | 3.54 ± 0.11 | 3.99±0.92 | 4.70 ± 0.44 |
Kidney | 0.57 ± 0.06 | 0.54 ± 0.08 | 0.74 ± 0.11 | 0.70 ± 0.09 | 0.67±0.11 | 0.87 ± 0.01 * | |
Pancreas | 0.20 ± 0.05 | 0.21 ± 0.04 | 0.25 ± 0.06 | 0.23 ± 0.04 | 0.26±0.04 | 0.24 ± 0.05 | |
Spleen | 0.56 ± 0.05 | 0.54 ± 0.02 | 0.55 ± 0.04 | 0.59 ± 0.05 | 0.55±0.04 | 0.58 ± 0.05 | |
Heart | 0.31 ± 0.03 | 0.32 ± 0.05 | 0.29 ± 0.02 | 0.31 ± 0.03 | 0.26±0.03 | 0.30 ± 0.04 | |
Lungs | 0.56 ± 0.03 | 0.62 ± 0.06 | 0.60 ± 0.03 | 0.60 ± 0.02 | 0.61 ± 0.04 | 0.73 ± 0.07 |
NC | NDM-ROP6 | DM-ROP3 | DM-ROP6 | DMC-ROP12 | DMC | |
---|---|---|---|---|---|---|
Pre-diabetic | 6.3 ± 0.9 | 5.7 ± 0.3 | 5.7 ± 0.5 | 6.0 ± 0.4 | 5.6 ± 0.5 | 5.9 ± 0.5 |
Treatment start | 5.9 ± 0.4 | 5.4 ± 0.5 | 19.0 ± 1.6 | 18.9 ± 1.8 | 17.5 ± 2.1 | 16.7 ± 1.6 |
7th Day | 6.1 ± 0.8 | 5.4 ± 0.3 | 19.9 ± 2.1 | 20.2 ± 1.3 | 18.9 ± 2.8 | 19.5 ± 1.3 |
14th Day | 6.2 ± 0.7 | 5 ± 0.2 | 18 ± 1.9 | 17.2 ± 0.8 | 12.9 ± 1.3 | 21.8 ± 1.7 |
21st Day | 6.4 ± 0.3 | 5.1 ± 0.1 | 16.7 ± 1.2 | 13.6 ± 0.7 | 12.2 ± 0.9 | 24.4 ± 1.3 |
28th Day | 5.9 ± 0.4 | 4.9 ± 0.3 | 15.9 ± 1 | 13.3 ± 1 | 10.5 ± 0.8 | 26.6 ± 1.9 |
35th Day | 5.9 ± 1 | 4.3 ± 0.4 | 14.7 ± 1.6 | 13.5 ± 1 | 10.4 ± 0.6 | 28.7 ± 1.6 |
42nd Day | 6.3 ± 0.6 | 4.3 ± 0.3 | 14.6 ± 1.3 | 12.7 ± 1.2 | 8.9 ± 1.0 | 29.8 ± 2.2 |
FBG difference | 0.4 ↑ | 1.1 ↓ | 4.4 ↓ | 6.2 ↓ | 8.6 ↓ | 13.1 ↑ |
% Difference | 6.6 | 20.8 ↓ | 23.0 ↓ | 32.8 ↓ | 49.1 ↓ | 78.4 ↑ |
ALT (U/L) | AST (U/L) | Bilirubin (µmol/L) | Creatinine (µmol/L) | Urea (mmol/L) | |
---|---|---|---|---|---|
NC | 94.5 ± 6 | 122.5 ± 3.4 | 1.1 ± 0.1 | 30.0 ± 1.2 | 7.2 ± 0.3 |
NDM-ROP6 | * 81.42 ± 4.8 | * 102.02 ± 3.7 | 1.1 ± 0.1 | 25.6 ± 2.9 | 7.4 ± 0.5 |
DM-ROP3 | * 120.84 ± 6.6 | * 175.2 ± 14.2 | * 1.8 ± 0.1 | * 35.4 ± 1.1 | 6.9 ± 0.6 |
DM-ROP6 | * 115.4 ± 4.3 | * 201.44 ± 13.2 | * 1.7 ± 0.1 | * 36.2 ± 2.2 | 6.5 ± 0.6 |
DM-ROP12 | * 119.54 ± 8.4 | * 138 ± 12.6 | * 1.87 ± 0.4 | * 39.6 ± 2.1 | 5.9 ± 3.3 |
DMC | * 178.98 ± 8.2 | * 322 ± 55.2 | * 4.72 ± 0.4 | * 45.2 ± 4 | * 14.0 ± 1 |
Parameters | ||||
---|---|---|---|---|
Groups | TT | TC | HDL | LDL |
NC | 0.68 ± 0.37 | 1.2 5 ± 0.04 | 0.79 ± 0.01 | 0.52 ± 0.1 |
NDM-ROP6 | 0.53 ± 0.11 | 1.10 ± 0.06 | 0.74 ± 0.04 | 0.45 ± 0.07 |
DM-ROP3 | 1.43 ± 0.09 * | 1.30 ± 0.6 | 0.78 ± 0.07 | 0.10 ± 0.01 * |
DM-ROP6 | 1.6 ± 0.14 * | 1.30 ± 0.05 | 0.73 ± 0.08 | 0.01 ± 0.0 * |
DM-RO12 | 1.2 ± 0.11 * | 1.31 ± 0.1 | 0.78 ± 0.08 | 0.02 ± 0.01 * |
DMC | 2.7 ± 0.36 * | 1.22 ± 0.23 | 1.02 ± 0.36 * | 0.03 ± 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabubii, Z.N.; Mbaria, J.M.; Mathiu, P.M.; Wanjohi, J.M.; Nyaboga, E.N. Diet Supplementation with Rosemary (Rosmarinus officinalis L.) Leaf Powder Exhibits an Antidiabetic Property in Streptozotocin-Induced Diabetic Male Wistar Rats. Diabetology 2024, 5, 12-25. https://doi.org/10.3390/diabetology5010002
Kabubii ZN, Mbaria JM, Mathiu PM, Wanjohi JM, Nyaboga EN. Diet Supplementation with Rosemary (Rosmarinus officinalis L.) Leaf Powder Exhibits an Antidiabetic Property in Streptozotocin-Induced Diabetic Male Wistar Rats. Diabetology. 2024; 5(1):12-25. https://doi.org/10.3390/diabetology5010002
Chicago/Turabian StyleKabubii, Zelipha N., James M. Mbaria, Peter Mbaabu Mathiu, John M. Wanjohi, and Evans N. Nyaboga. 2024. "Diet Supplementation with Rosemary (Rosmarinus officinalis L.) Leaf Powder Exhibits an Antidiabetic Property in Streptozotocin-Induced Diabetic Male Wistar Rats" Diabetology 5, no. 1: 12-25. https://doi.org/10.3390/diabetology5010002