Exploration of Foundational Models for Blood Glucose Forecasting in Type-1 Diabetes Pediatric Patients
Abstract
:1. Introduction
Related Works
2. Materials and Methods
2.1. Data and Preprocessing
2.2. Models Development
2.2.1. State-of-the-Art Models
2.2.2. Multilayer Perceptron-Based Models
2.2.3. Foundational Models
2.3. Evaluation Metrics
3. Results
3.1. Glucose Data Analysis
3.2. Models Performances
3.2.1. Statistical Evaluation
3.2.2. Clinical Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zubiaga, A. Natural Language Processing in the Era of Large Language Models. Front. Artif. Intell. 2024, 6, 1350306. [Google Scholar] [CrossRef] [PubMed]
- Kalyan, K.S. A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4. Nat. Lang. Process. J. 2023, 6, 100048. [Google Scholar] [CrossRef]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models Are Few-Shot Learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Woo, G.; Liu, C.; Kumar, A.; Xiong, C.; Savarese, S.; Sahoo, D. Unified Training of Universal Time Series Forecasting Transformers. arXiv 2024, arXiv:2402.02592. [Google Scholar]
- Clusmann, J.; Kolbinger, F.R.; Muti, H.S.; Carrero, Z.I.; Eckardt, J.-N.; Laleh, N.G.; Löffler, C.M.L.; Schwarzkopf, S.-C.; Unger, M.; Veldhuizen, G.P.; et al. The Future Landscape of Large Language Models in Medicine. Commun. Med. 2023, 3, 141. [Google Scholar] [CrossRef]
- Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J. Biomed. Health Inform. 2018, 22, 1589–1604. [Google Scholar] [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and Accurate Deep Learning with Electronic Health Records. npj Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef]
- van Doorn, W.P.T.M.; Foreman, Y.D.; Schaper, N.C.; Savelberg, H.H.C.M.; Koster, A.; van der Kallen, C.J.H.; Wesselius, A.; Schram, M.T.; Henry, R.M.A.; Dagnelie, P.C.; et al. Machine Learning-Based Glucose Prediction with Use of Continuous Glucose and Physical Activity Monitoring Data: The Maastricht Study. PLoS ONE 2021, 16, e0253125. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/atlas/t1d-index-2022/ (accessed on 1 August 2024).
- Ogle, G.D.; Wang, F.; Gregory, G.A.; Maniam, J. Type 1 Diabetes Numbers in Children and Adults Authors. Available online: https://diabetesatlas.org/idfawp/resource-files/2022/12/IDF-T1D-Index-Report.pdf (accessed on 3 September 2024).
- Liao, W.; Porte-Agel, F.; Fang, J.; Rehtanz, C.; Wang, S.; Yang, D.; Yang, Z. TimeGPT in Load Forecasting: A Large Time Series Model Perspective. arXiv 2024, arXiv:2404.04885. [Google Scholar]
- Das, A.; Kong, W.; Leach, A.; Mathur, S.; Sen, R.; Yu, R. Long-Term Forecasting with TiDE: Time-Series Dense Encoder. arXiv 2024, arXiv:2304.08424. [Google Scholar]
- Chen, S.-A.; Li, C.-L.; Yoder, N.; Arik, S.O.; Pfister, T. TSMixer: An All-MLP Architecture for Time Series Forecasting. arXiv 2023, arXiv:2303.06053. [Google Scholar]
- D’Antoni, F.; Petrosino, L.; Sgarro, F.; Pagano, A.; Vollero, L.; Piemonte, V.; Merone, M. Prediction of Glucose Concentration in Children with Type 1 Diabetes Using Neural Networks: An Edge Computing Application. Bioengineering 2022, 9, 183. [Google Scholar] [CrossRef]
- Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions. Available online: https://pubmed.ncbi.nlm.nih.gov/36433278/ (accessed on 3 September 2024).
- De Bois, M.; Yacoubi, M.A.E.; Ammi, M. GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in Type 1 Diabetes. Med. Biol. Eng. Comput. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Iacono, F.; Magni, L.; Toffanin, C. Personalized LSTM-Based Alarm Systems for Hypoglycemia and Hyperglycemia Prevention. Biomed. Signal Process. Control 2023, 86, 105167. [Google Scholar] [CrossRef]
- Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing for Blood Glucose Prediction. BMC Medical Informatics and Decision Making. Available online: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01462-5 (accessed on 3 September 2024).
- Aiello, E.M.; Lisanti, G.; Magni, L.; Musci, M.; Toffanin, C. Therapy-Driven Deep Glucose Forecasting. Eng. Appl. Artif. Intell. 2020, 87, 103255. [Google Scholar] [CrossRef]
- Nguyen, B.P.; Pham, H.N.; Tran, H.; Nghiem, N.; Nguyen, Q.H.; Do, T.T.T.; Tran, C.T.; Simpson, C.R. Predicting the Onset of Type 2 Diabetes Using Wide and Deep Learning with Electronic Health Records. Comput. Methods Programs Biomed. 2019, 182, 105055. [Google Scholar] [CrossRef]
- Marx, A.; Di Stefano, F.; Leutheuser, H.; Chin-Cheong, K.; Pfister, M.; Burckhardt, M.-A.; Bachmann, S.; Vogt, J.E. Blood Glucose Forecasting from Temporal and Static Information in Children with T1D. Front. Pediatr. 2023, 11, 1296904. [Google Scholar] [CrossRef]
- Seq Miller, J.A.; Aldosari, M.; Saeed, F.; Barna, N.H.; Rana, S.; Arpinar, I.B.; Liu, N. A Survey of Deep Learning and Foundation Models for Time Series Forecasting. arXiv 2024, arXiv:2401.13912. [Google Scholar]
- Tan, M.; Merrill, M.A.; Gupta, V.; Althoff, T.; Hartvigsen, T. Are Language Models Actually Useful for Time Series Forecasting? arXiv 2024, arXiv:2406.16964. [Google Scholar]
- Tang, H.; Zhang, C.; Jin, M.; Yu, Q.; Wang, Z.; Jin, X.; Zhang, Y.; Du, M. Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities. arXiv 2024, arXiv:2402.10835. [Google Scholar]
- Deforce, B.; Baesens, B.; Asensio, E.S. Time-Series Foundation Models for Forecasting Soil Moisture Levels in Smart Agriculture. arXiv 2024, arXiv:2405.18913. [Google Scholar]
- Dooley, S.; Khurana, G.S.; Mohapatra, C.; Naidu, S.; White, C. ForecastPFN: Synthetically-Trained Zero-Shot Forecasting. arXiv 2023, arXiv:2311.01933. [Google Scholar]
- Rasul, K.; Ashok, A.; Williams, A.R.; Ghonia, H.; Bhagwatkar, R.; Khorasani, A.; Bayazi, M.J.D.; Adamopoulos, G.; Riachi, R.; Hassen, N.; et al. Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. arXiv 2024, arXiv:2310.08278. [Google Scholar]
- Dexcom G6 CGM System. Available online: https://www.dexcom.com/en-us/g6-cgm-system (accessed on 1 August 2024).
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Namin, A.S. Forecasting Economics and Financial Time Series: ARIMA vs. LSTM. Available online: https://arxiv.org/abs/1803.06386 (accessed on 3 September 2024).
- Komatsuzaki, A. One Epoch Is All You Need. arXiv 2019, arXiv:1906.06669. [Google Scholar]
- Koparanov, K.A.; Georgiev, K.K.; Shterev, V.A. Lookback Period, Epochs and Hidden States Effect on Time Series Prediction Using a LSTM Based Neural Network. In Proceedings of the 2020 28th National Conference with International Participation (TELECOM), Sofia, Bulgaria, 29–30 October 2020; pp. 61–64. [Google Scholar]
- Clarke, W.L. The Original Clarke Error Grid Analysis (EGA). Diabetes Technol. Ther. 2005, 7, 776–779. [Google Scholar] [CrossRef]
- de Bock, M.; Codner, E.; Craig, M.E.; Huynh, T.; Maahs, D.M.; Mahmud, F.H.; Marcovecchio, L.; DiMeglio, L.A. ISPAD Clinical Practice Consensus Guidelines 2022: Glycemic Targets and Glucose Monitoring for Children, Adolescents, and Young People with Diabetes. Pediatr. Diabetes 2022, 23, 1270–1276. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Marling, C.; Bunescu, R. The OhioT1DM Dataset for Blood Glucose Level Prediction: Update 2020. CEUR Workshop Proc. 2020, 2675, 71–74. [Google Scholar] [PubMed]
- Huang, J.; Yeung, A.M.; Kerr, D.; Klonoff, D.C. Using ChatGPT to Predict the Future of Diabetes Technology. J. Diabetes Sci. Technol. 2023, 17, 853–854. [Google Scholar] [CrossRef] [PubMed]
- Sng, G.G.R.; Tung, J.Y.M.; Lim, D.Y.Z.; Bee, Y.M. Potential and Pitfalls of ChatGPT and Natural-Language Artificial Intelligence Models for Diabetes Education. Diabetes Care 2023, 46, e103–e105. [Google Scholar] [CrossRef]
- Contreras, I.; Vehi, J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J. Med. Internet Res. 2018, 20, e10775. [Google Scholar] [CrossRef]
- Guan, Z.; Li, H.; Liu, R.; Cai, C.; Liu, Y.; Li, J.; Wang, X.; Huang, S.; Wu, L.; Liu, D.; et al. Artificial Intelligence in Diabetes Management: Advancements, Opportunities, and Challenges. Cell Rep. Med. 2023, 4, 101213. [Google Scholar] [CrossRef]
- Lombrozo, T. Learning by Thinking in Natural and Artificial Minds. Trends Cogn. Sci. 2024; online ahead of print. [Google Scholar] [CrossRef]
Group | Total | AHCL Therapy | SAP Therapy | Height (cm) | Weight (kg) |
---|---|---|---|---|---|
4–7 years | 2 | 2 | 0 | 110.25 ± 0.25 | 19.6 ± 1.6 |
8–11 years T1 | 2 | 0 | 2 | 135.5 ± 2.1 | 34.2 ± 4.6 |
8–11 years T2 | 4 | 3 | 1 | 144.1 ± 7.4 | 39.3 ± 4.5 |
12–18 years | 7 | 6 | 1 | 172.5 ± 7.3 | 59 ± 9.4 |
Model | A | B | C | D | E |
---|---|---|---|---|---|
ARIMAX | 91.33 | 8.67 | 0.0 | 0.0 | 0.0 |
XGBoost | 78.44 | 17.33 | 0.0 | 4.22 | 0.0 |
LSTM | 86.44 | 12.67 | 0.0 | 0.89 | 0.0 |
CNN-1D | 67.56 | 30.22 | 0.0 | 2.22 | 0.0 |
Shallow-MLP | 73.55 | 23.55 | 0.0 | 2.89 | 0.0 |
TiDE | 64.89 | 30.44 | 0.0 | 1.11 | 0.0 |
TiDE-MM | 87.11 | 11.78 | 0.0 | 1.11 | 0.0 |
TSMixer | 53.55 | 40.88 | 0.0 | 5.55 | 0.0 |
TSMixer-MM | 60.44 | 35.11 | 0.0 | 4.44 | 0.0 |
TimeGPT | 85.56 | 12.67 | 0.0 | 1.78 | 0.0 |
TimeGPT-FT | 84.89 | 14.0 | 0.0 | 1.11 | 0.0 |
TimeGPT-LH | 81.11 | 15.11 | 0.0 | 3.78 | 0.0 |
Model | A | B | C | D | E |
---|---|---|---|---|---|
ARIMAX | 61.78 | 36 | 0 | 2.22 | 0 |
XGBoost | 61.11 | 34.67 | 0 | 4.22 | 0 |
LSTM | 61.78 | 34.89 | 0 | 3.33 | 0 |
CNN-1D | 45.56 | 50 | 1.78 | 4.67 | 0 |
Shallow-MLP | 56 | 39.77 | 0.44 | 3.77 | 0 |
TiDE | 51.33 | 42.22 | 1.11 | 5.33 | 0 |
TiDE-MM | 57.11 | 38 | 0 | 4.89 | 0 |
TSMixer | 45.33 | 46 | 1.33 | 6.89 | 0.44 |
TSMixer-MM | 51.22 | 47.2 | 0 | 1.58 | 0 |
TimeGPT | 74 | 22.89 | 0.22 | 2.89 | 0 |
TimeGPT-FT | 68.22 | 28.89 | 0.89 | 2 | 0 |
TimeGPT-LH | 69.56 | 25.56 | 0.89 | 4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rancati, S.; Bosoni, P.; Schiaffini, R.; Deodati, A.; Mongini, P.A.; Sacchi, L.; Toffanin, C.; Bellazzi, R. Exploration of Foundational Models for Blood Glucose Forecasting in Type-1 Diabetes Pediatric Patients. Diabetology 2024, 5, 584-599. https://doi.org/10.3390/diabetology5060042
Rancati S, Bosoni P, Schiaffini R, Deodati A, Mongini PA, Sacchi L, Toffanin C, Bellazzi R. Exploration of Foundational Models for Blood Glucose Forecasting in Type-1 Diabetes Pediatric Patients. Diabetology. 2024; 5(6):584-599. https://doi.org/10.3390/diabetology5060042
Chicago/Turabian StyleRancati, Simone, Pietro Bosoni, Riccardo Schiaffini, Annalisa Deodati, Paolo Alberto Mongini, Lucia Sacchi, Chiara Toffanin, and Riccardo Bellazzi. 2024. "Exploration of Foundational Models for Blood Glucose Forecasting in Type-1 Diabetes Pediatric Patients" Diabetology 5, no. 6: 584-599. https://doi.org/10.3390/diabetology5060042
APA StyleRancati, S., Bosoni, P., Schiaffini, R., Deodati, A., Mongini, P. A., Sacchi, L., Toffanin, C., & Bellazzi, R. (2024). Exploration of Foundational Models for Blood Glucose Forecasting in Type-1 Diabetes Pediatric Patients. Diabetology, 5(6), 584-599. https://doi.org/10.3390/diabetology5060042