The History, Evolution and Future of Continuous Glucose Monitoring (CGM)
Abstract
:1. Introduction
2. History of CGM
3. Early Commercial CGM Systems: 1999–2006
4. The Evolution of CGM: 2006–2015
5. Modern CGM: 2015–Present
6. Emerging Technology
7. CGM Usage
8. Predictive Modeling
9. Early Diagnostics
10. Diabetes Education
11. Insulin Dosage
12. Automated Insulin Delivery Systems
13. Clinical Research
14. Personalized Treatment
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Rodbard, D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol. Ther. 2016, 18, S23–S213. [Google Scholar] [CrossRef] [PubMed]
- Martens, T.; Beck, R.W.; Bailey, R.; Ruedy, K.J.; Calhoun, P.; Peters, A.L.; Pop-Busui, R.; Philis-Tsimikas, A.; Bao, S.; Umpierrez, G.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients with Type 2 Diabetes Treated with Basal Insulin: A Randomized Clinical Trial. JAMA 2021, 325, 2262–2272. [Google Scholar] [CrossRef]
- Carlson, A.L.; Mullen, D.M.; Bergenstal, R.M. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol. Ther. 2017, 19, S4–S11. [Google Scholar] [CrossRef]
- Group TJDRFCGMS. Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. N. Engl. J. Med. 2008, 359, 1464–1476. [Google Scholar] [CrossRef] [PubMed]
- Lacy, M.E.; Lee, K.E.; Atac, O.; Heier, K.; Fowlkes, J.; Kucharska-Newton, A.; Moga, D.C. Patterns and Trends in Continuous Glucose Monitoring Utilization Among Commercially Insured Individuals with Type 1 Diabetes: 2010–2013 to 2016–2019. Clin. Diabetes 2024, 42, 388–397. [Google Scholar] [CrossRef]
- Ajjan, R.A. How can we realize the clinical benefits of continuous glucose monitoring? Diabetes Technol. Ther. 2017, 19, S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.F.; Foster, J.R. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 2012, 69, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, H.; Mølsted-Pedersen, L.; Schmølker, L.; Olesen, H. Reference intervals for urinary glucose in pregnancy. Scand. J. Clin. Lab. Investig. 1984, 44, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.A.; Gerende, L.J. Dextrostix Method for Determination of Blood Glucose Levels: A Statistical Evaluation. JAMA 1966, 198, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S. Historical Achievements of Self-Monitoring of Blood Glucose Technology Development in Japan. J. Diabetes Sci. Technol. 2011, 5, 1300. [Google Scholar] [CrossRef]
- Kesavadev, J.; Das, A.K.; Manojan, K.K.; Muruganathan, A.; Jagadeesha, A.; Shenoy, M.T.; Sreelakshmi, R.; Basanth, A.; Jothydev, K.; Krishnan, G. History and Evolution of Capillary Glucose Monitoring. Int. J. Diabetes Technol. 2023, 2, 37–42. [Google Scholar] [CrossRef]
- Lee, I.; Probst, D.; Klonoff, D.; Sode, K. Continuous glucose monitoring systems—Current status and future perspectives of the flagship technologies in biosensor research. Biosens. Bioelectron. 2021, 181, 113054. [Google Scholar] [CrossRef] [PubMed]
- Innovation Milestones|Medtronic. Available online: https://www.medtronicdiabetes.com/about-medtronic-innovation/milestone-timeline (accessed on 22 November 2024).
- Diabetes Research in Children Network (DirecNet) Study Group. The accuracy of the Guardian RT continuous glucose monitor in children with type 1 diabetes. Diabetes Technol. Ther. 2008, 10, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Olczuk, D.; Priefer, R. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes Metab. Syndr. 2018, 12, 181–187. [Google Scholar] [CrossRef]
- Didyuk, O.; Econom, N.; Guardia, A.; Livingston, K.; Klueh, U. Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation. J. Diabetes Sci. Technol. 2021, 15, 676–683. [Google Scholar] [CrossRef]
- Hirsch, I.B. Introduction: History of Glucose Monitoring. Compendia 2018, 2018, 1. [Google Scholar] [CrossRef]
- History of the Dexcom CGM: Revolutionizing Glucose Management Connected in Motion. Available online: https://www.connectedinmotion.ca/blog/history-of-the-dexcom-cgm/ (accessed on 22 November 2024).
- FDA Approves First Continuous Glucose Monitoring System for Adults Not Requiring Blood Sample Calibration|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-adults-not-requiring-blood-sample (accessed on 22 November 2024).
- Garg, S.K.; Kipnes, M.; Castorino, K.; Bailey, T.S.; Akturk, H.K.; Welsh, J.B.; Christiansen, M.P.; Balo, A.K.; Brown, S.A.; Reid, J.L.; et al. Accuracy and Safety of Dexcom G7 Continuous Glucose Monitoring in Adults with Diabetes. Diabetes Technol. Ther. 2022, 24, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Alva, S.; Brazg, R.; Castorino, K.; Kipnes, M.; Liljenquist, D.R.; Liu, H. Accuracy of the Third Generation of a 14-Day Continuous Glucose Monitoring System. Diabetes Ther. 2023, 14, 767–776. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves First Continuous Glucose Monitoring System with a Fully Implantable Glucose Sensor and Compatible Mobile App for Adults with Diabetes|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-fully-implantable-glucose-sensor-and (accessed on 22 November 2024).
- Data Supports Safety and Accuracy of Senseonics 365-Day CGM. Available online: https://www.drugdeliverybusiness.com/data-safety-accuracy-senseonics-365-day-cgm/ (accessed on 22 November 2024).
- Kim, K.-S.; Lee, S.-H.; Yoo, W.S.; Park, C.-Y. Accuracy and Safety of the 15-Day CareSens Air Continuous Glucose Monitoring System. Diabetes Technol. Ther. 2024, 26, 222. [Google Scholar] [CrossRef] [PubMed]
- Glatzer, T.; Ringemann, C.; Militz, D.; Mueller-Hoffmann, W. Concept and Implementation of a Novel Continuous Glucose Monitoring Solution With Glucose Predictions on Board. J. Diabetes Sci. Technol. 2024, 18, 1004–1008. [Google Scholar] [CrossRef]
- Herrero, P.; Andorrà, M.; Babion, N.; Bos, H.; Koehler, M.; Klopfenstein, Y.; Leppäaho, E.; Lustenberger, P.; Peak, A.; Ringemann, C.; et al. Enhancing the Capabilities of Continuous Glucose Monitoring with a Predictive App. J. Diabetes Sci. Technol. 2024, 18, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- FDA Clears First Over-the-Counter Continuous Glucose Monitor|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-clears-first-over-counter-continuous-glucose-monitor (accessed on 22 November 2024).
- Abbott Receives U.S. FDA Clearance for Two New Over-the-Counter Continuous Glucose Monitoring Systems—10 June 2024. Available online: https://abbott.mediaroom.com/2024-06-10-Abbott-Receives-U-S-FDA-Clearance-for-Two-New-Over-the-Counter-Continuous-Glucose-Monitoring-Systems (accessed on 22 November 2024).
- Tang, L.; Chang, S.J.; Chen, C.-J.; Liu, J.-T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors 2020, 20, 6925. [Google Scholar] [CrossRef] [PubMed]
- Nemaura Medical Wins CE Mark for SugarBeat CGM—Drug Delivery Business. Available online: https://www.drugdeliverybusiness.com/nemaura-medical-wins-ce-mark-for-sugarbeat-cgm/ (accessed on 25 November 2024).
- Apple Watch Creeps Closer to Adding Glucose Tracking: Bloomberg. Available online: https://www.fiercebiotech.com/medtech/apples-long-desired-glucose-tracking-reportedly-proof-concept-stage-bloomberg (accessed on 25 November 2024).
- Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Jensen, M.H.; Hejlesen, O. Short-term prediction of future continuous glucose monitoring readings in type 1 diabetes: Development and validation of a neural network regression model. Int. J. Med. Inform. 2021, 151, 104472. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.L.; Kronborg, T.; Jensen, M.H.; Hejlesen, O. Penalty weighted glucose prediction models could lead to better clinically usage. Comput. Biol. Med. 2021, 138, 104865. [Google Scholar] [CrossRef]
- Woldaregay, A.Z.; Årsand, E.; Botsis, T.; Albers, D.; Mamykina, L.; Hartvigsen, G. Data-Driven Blood Glucose Pattern Classification and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes. J. Med. Internet Res. 2019, 21, e11030. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Bender, C. Development of Machine Learning Models for the Identification of Elevated Ketone Bodies During Hyperglycemia in Patients with Type 1 Diabetes. Diabetes Technol. Ther. 2024, 26, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, J.; Hansen, T.K.; Cichosz, S.L. Hypoglycemia event prediction from CGM using ensemble learning. Front. Clin. Diabetes Healthc. 2022, 3, 71. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.L.; Frystyk, J.; Hejlesen, O.K.; Tarnow, L.; Fleischer, J. A novel algorithm for prediction and detection of hypoglycemia based on continuous glucose monitoring and heart rate variability in patients with type 1 diabetes. J. Diabetes Sci. Technol. 2014, 8, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Qaraqe, M.K.; Belhaouari, S.; Petrovski, G. Long Term HbA1c Prediction Using Multi-Stage CGM Data Analysis. IEEE Sens. J. 2021, 21, 15237–15247. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Jensen, M.H.; Olesen, S.S. Development and Validation of a Machine Learning Model to Predict Weekly Risk of Hypoglycemia in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring. Diabetes Technol. Ther. 2024, 26, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.L.; Olesen, S.S.; Jensen, M.H. Explainable Machine-Learning Models to Predict Weekly Risk of Hyperglycemia, Hypoglycemia, and Glycemic Variability in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Hollmann, N.; Müller, S.; Purucker, L.; Krishnakumar, A.; Körfer, M.; Bin Hoo, S.; Schirrmeister, R.T.; Hutter, F. Accurate predictions on small data with a tabular foundation model. Nature 2025, 637, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Shchur, O.; Turkmen, A.C.; Erickson, N.; Shen, H.; Shirkov, A.; Hu, T.; Wang, B. AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting. In Proceedings of the Second International Conference on Automated Machine Learning, PMLR, Potsdam, Germany, 12–15 November 2023; Volume 228. [Google Scholar]
- Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv 2020, arXiv:2003.06505. [Google Scholar]
- Soliman, A.; DeSanctis, V.; Yassin, M.; Elalaily, R.; Eldarsy, N. Continuous glucose monitoring system and new era of early diagnosis of diabetes in high risk groups. Indian J. Endocrinol. Metab. 2014, 18, 274. [Google Scholar] [CrossRef]
- Haynes, A.; Tully, A.; Smith, G.J.; Penno, M.A.; Craig, M.E.; Wentworth, J.M.; Huynh, T.; Colman, P.G.; Soldatos, G.; Anderson, A.J.; et al. Early Dysglycemia Is Detectable Using Continuous Glucose Monitoring in Very Young Children at Risk of Type 1 Diabetes. Diabetes Care 2024, 47, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.L.; Kronborg, T.; Laugesen, E.; Hangaard, S.; Fleischer, J.; Hansen, T.K.; Jensen, M.H.; Poulsen, P.L.; Vestergaard, P. From Stability to Variability: Classification of Healthy Individuals, Prediabetes, and Type 2 Diabetes using Glycemic Variability Indices from Continuous Glucose Monitoring Data. Diabetes Technol. Ther. 2024, 27, 34–44. [Google Scholar] [CrossRef]
- Di Filippo, D.; Ahmadzai, M.; Chang, M.H.Y.; Horgan, K.; Ong, R.M.; Darling, J.; Akhtar, M.; Henry, A.; Welsh, A. Continuous Glucose Monitoring for the Diagnosis of Gestational Diabetes Mellitus: A Pilot Study. J. Diabetes Res. 2022, 2022, 5142918. [Google Scholar] [CrossRef]
- Ayers, A.T.; Ho, C.N.; Kerr, D.; Cichosz, S.L.; Mathioudakis, N.; Wang, M.; Najafi, B.; Moon, S.-J.; Pandey, A.; Klonoff, D.C. Artificial Intelligence to Diagnose Complications of Diabetes. J. Diabetes Sci. Technol. 2024, 19, 246–264. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Johansen, M.D.; Hejlesen, O. Toward Big Data Analytics. J. Diabetes Sci. Technol. 2016, 10, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.L.; Hejlesen, O. Classification of Gastroparesis from Glycemic Variability in Type 1 Diabetes: A Proof-of-Concept Study. J. Diabetes Sci. Technol. 2022, 16, 1190–1195. [Google Scholar] [CrossRef]
- Phillip, M.; Danne, T.; Shalitin, S.; Buckingham, B.; Laffel, L.; Tamborlane, W.; Battelino, T.; Participants, F.T.C.F. Use of continuous glucose monitoring in children and adolescents (*). Pediatr. Diabetes 2012, 13, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Głowińska-Olszewska, B.; Tobiaszewska, M.; Łuczyński, W.; Bossowski, A. Monthly use of a real-time continuous glucose monitoring system as an educational and motivational tool for poorly controlled type 1 diabetes adolescents. Adv. Med. Sci. 2013, 58, 344–352. [Google Scholar] [CrossRef]
- Alfadhli, E.; Osman, E.; Basri, T. Use of a real time continuous glucose monitoring system as an educational tool for patients with gestational diabetes. Diabetol. Metab. Syndr. 2016, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Ávila, D.A.; Esquivel-Lu, A.I.; Salazar-Lozano, C.R.; Jones, K.; Doubova, S.V. The effects of professional continuous glucose monitoring as an adjuvant educational tool for improving glycemic control in patients with type 2 diabetes. BMC Endocr. Disord. 2021, 21, 79. [Google Scholar] [CrossRef]
- Miller, E.M. Using Continuous Glucose Monitoring in Clinical Practice. Clin. Diabetes 2020, 38, 429. [Google Scholar] [CrossRef] [PubMed]
- Mensing, C.R.; Norris, S.L. Group Education in Diabetes: Effectiveness and Implementation. Diabetes Spectr. 2003, 16, 96–103. [Google Scholar] [CrossRef]
- Bailey, K.J.; Little, J.P.; Jung, M.E. Self-Monitoring Using Continuous Glucose Monitors with Real-Time Feedback Improves Exercise Adherence in Individuals with Impaired Blood Glucose: A Pilot Study. Diabetes Technol. Ther. 2016, 18, 185–193. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Brown, T.T.; Maruthur, N.; Ranasinghe, P.; Berger, Z.; Suh, Y.D.; Wilson, L.M.; Haberl, E.B.; Brick, J.; Bass, E.B.; et al. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 336–347. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Tamborlane, W.V.; Ahmann, A.; Buse, J.B.; Dailey, G.; Davis, S.N.; Joyce, C.; Peoples, T.; Perkins, B.A.; Welsh, J.B.; et al. Effectiveness of Sensor-Augmented Insulin-Pump Therapy in Type 1 Diabetes. N. Engl. J. Med. 2010, 363, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Aleppo, G.; Ruedy, K.J.; Riddlesworth, T.D.; Kruger, D.F.; Peters, A.L.; Hirsch, I.; Bergenstal, R.M.; Toschi, E.; Ahmann, A.J.; Shah, V.N.; et al. REPLACE-BG: A Randomized Trial Comparing Continuous Glucose Monitoring With and Without Routine Blood Glucose Monitoring in Adults with Well-Controlled Type 1 Diabetes. Diabetes Care 2017, 40, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Phillip, M.; Bratina, N.; Nimri, R.; Oskarsson, P.; Bolinder, J. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 2011, 34, 795–800. [Google Scholar] [CrossRef]
- Riddlesworth, T.D.; Ruedy, K.J.; Kollman, C.; Ahmann, A.J.; Bergenstal, R.M.; Bhargava, A.; Bode, B.W.; Haller, S.; Kruger, D.F.; McGill, J.B.; et al. Effect of initiating use of an insulin pump in adults with type 1 diabetes using multiple daily insulin injections and continuous glucose monitoring (DIAMOND): A multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 700–708. [Google Scholar] [CrossRef]
- Castle, J.R.; DeVries, J.H.; Kovatchev, B. Future of automated insulin delivery systems. Diabetes Technol. Ther. 2017, 19, S67–S72. [Google Scholar] [CrossRef] [PubMed]
- Knoll, C.; Peacock, S.; Wäldchen, M.; Cooper, D.; Aulakh, S.K.; Raile, K.; Hussain, S.; Braune, K. Real-world evidence on clinical outcomes of people with type 1 diabetes using open-source and commercial automated insulin dosing systems: A systematic review. Diabet. Med. 2022, 39, e14741. [Google Scholar] [CrossRef] [PubMed]
- Bionic Pancreas Research Group. Multicenter, Randomized Trial of a Bionic Pancreas in Type 1 Diabetes. N. Engl. J. Med. 2022, 387, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.D.; Kanapka, L.G.; Beck, R.W.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.; Ruedy, K.J.; Jost, E.; Carria, L.; et al. A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 836–845. [Google Scholar] [CrossRef]
- van Bon, A.C.; Blauw, H.; Jansen, T.J.P.; Laverman, G.D.; Urgert, T.; Geessink-Mennink, J.; Mulder, A.H.; Out, M.; Veldman, R.G.; Onvlee, A.J.; et al. Bihormonal fully closed-loop system for the treatment of type 1 diabetes: A real-world multicentre, prospective, single-arm trial in the Netherlands. Lancet Digit. Health 2024, 6, e272–e280. [Google Scholar] [CrossRef]
- Wilson, L.M.; Jacobs, P.G.; Castle, J.R. Role of glucagon in automated insulin delivery. Endocrinol. Metab. Clin. N. Am. 2019, 49, 179. [Google Scholar] [CrossRef]
- Chehregosha, H.; Khamseh, M.E.; Malek, M.; Hosseinpanah, F.; Ismail-Beigi, F. A View Beyond HbA1c: Role of Continuous Glucose Monitoring. Diabetes Ther. 2019, 10, 853–863. [Google Scholar] [CrossRef]
- Battelino, T.; Alexander, C.M.; A Amiel, S.; Arreaza-Rubin, G.; Beck, R.W.; Bergenstal, R.M.; A Buckingham, B.; Carroll, J.; Ceriello, A.; Chow, E.; et al. Continuous glucose monitoring and metrics for clinical trials: An international consensus statement. Lancet Diabetes Endocrinol. 2023, 11, 42–57. [Google Scholar] [CrossRef]
- Fox, B.Q.; Benjamin, P.F.; Aqeel, A.; Fitts, E.; Flynn, S.; Levine, B.; Maslak, E.; Milner, R.L.; Ose, B.; Poeschla, M.; et al. Continuous Glucose Monitoring Use in Clinical Trials for On-Market Diabetes Drugs. Clin. Diabetes 2021, 39, 160. [Google Scholar] [CrossRef]
- Cichosz, S.L. Beyond A1c: Investigating the Contribution of Red Blood Cell Parameters to Dysglycemia Diagnostics. J. Diabetes Sci. Technol. 2024, 18, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Loy, S.L.; Lin, J.; Cheung, Y.B.; Sreedharan, A.V.; Chin, X.; Godfrey, K.M.; Tan, K.H.; Shek, L.P.-C.; Chong, Y.S.; Leow, M.K.-S.; et al. Influence of red blood cell indices on HbA1c performance in detecting dysglycaemia in a Singapore preconception cohort study. Sci. Rep. 2021, 11, 20850. [Google Scholar] [CrossRef]
- Schnell, O.; Barnard, K.; Bergenstal, R.; Bosi, E.; Garg, S.; Guerci, B.; Haak, T.; Hirsch, I.B.; Ji, L.; Joshi, S.R.; et al. Role of Continuous Glucose Monitoring in Clinical Trials: Recommendations on Reporting. Diabetes Technol. Ther. 2017, 19, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.E.; Kanapka, L.G.; Rickels, M.R.; Ahmann, A.; Aleppo, G.; Beck, R.; Bhargava, A.; Bode, B.W.; Carlson, A.; Chaytor, N.S.; et al. Effect of Continuous Glucose Monitoring on Hypoglycemia in Older Adults with Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2020, 323, 2397–2406. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, H.; Huang, Y.; Ye, S.; Ma, Y.; Xin, Y.; Chen, X.; Zhao, S. Association of time in range with postoperative wound healing in patients with diabetic foot ulcers. Int. Wound J. 2021, 19, 1309. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhu, W.; Liu, C.; Yao, H.; You, J.; Chen, Y.; Ying, X.; Li, L. Association of continuous glucose monitoring-derived time in range with major amputation risk in diabetic foot osteomyelitis patients undergoing amputation. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221099337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, M.; Oliver, N. The role of real-time continuous glucose monitoring in diabetes management and how it should link to integrated personalized diabetes management. Diabetes Obes. Metab. 2024, 26, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.; Blackburn, M.; Allen, J.; Campbell, F.; Elleri, D.; Leelarathna, L.; Rankin, D.; Tauschmann, M.; Thabit, H.; Hovorka, R. Patients’ and caregivers’ experiences of using continuous glucose monitoring to support diabetes self-management: Qualitative study. BMC Endocr. Disord. 2018, 18, 12. [Google Scholar] [CrossRef]
- Vettoretti, M.; Cappon, G.; Acciaroli, G.; Facchinetti, A.; Sparacino, G. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. J. Diabetes Sci. Technol. 2018, 12, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Seav, S.M.; Ongwela, L.; Lee, J.J.; Aubyrn, R.; Cao, F.Y.; Kalinsky, A.; Ramos, O.A.; Gu, Y.; Kingston, K.; et al. Empowering Hospitalized Patients With Diabetes: Implementation of a Hospital-wide CGM Policy with EHR-Integrated Validation for Dosing Insulin. Diabetes Care 2024, 47, 1838–1845. [Google Scholar] [CrossRef]
- Underwood, P.; Hibben, J.; Gibson, J.; DiNardo, M. Virtual visits and the use of continuous glucose monitoring for diabetes care in the era of COVID-19. J. Am. Assoc. Nurse Pract. 2021, 34, 586. [Google Scholar] [CrossRef] [PubMed]
- de Kreutzenberg, S.V. Telemedicine for the Clinical Management of Diabetes; Implications and Considerations After COVID-19 Experience. High Blood Press. Cardiovasc. Prev. 2022, 29, 319. [Google Scholar] [CrossRef]
- Reddy, S.; Wu, C.C.; José, A.; Hsieh, J.L.; Rautela, S.D. Personalized Virtual Care Using Continuous Glucose Monitoring in Adults With Type 2 Diabetes Treated with Less Intensive Therapies. Clin. Diabetes 2023, 41, 452. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; McKinlay, C.J.D.; Harding, J.E. Neonatal hypoglycemia: Continuous glucose monitoring. Curr. Opin. Pediatr. 2018, 30, 204. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, C.J.; Chase, J.G.; Dickson, J.; Harris, D.L.; Alsweiler, J.M.; Harding, J.E. Continuous glucose monitoring in neonates: A review. Matern. Health Neonatol. Perinatol. 2017, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Beardsall, K.; Thomson, L.; Guy, C.; Iglesias-Platas, I.; van Weissenbruch, M.M.; Bond, S.; Allison, A.; Kim, S.; Petrou, S.; Pantaleo, B.; et al. Real-time continuous glucose monitoring in preterm infants (REACT): An international, open-label, randomised controlled trial. Lancet Child. Adolesc. Health 2021, 5, 265–273. [Google Scholar] [CrossRef]
Company | Dexcom | Abbott | Medtronic | ||
---|---|---|---|---|---|
CGM | G6 | G7 | Libre 2 | Libre 3 | Guardian 4 |
Approved, years | ≥2 | ≥2 | ≥4 | ≥4 or 2 (plus) | ≥7 |
Sensor life, days | 10 d | 10.5 d + 12 h | 14 d | 15 d | 7 d |
Warm time | 120 min | 30 min | 60 min | 60 min | 120 min |
Calibration needed | no | no | no | no | no |
Pump integration | yes | yes | limited | yes | yes |
CGM data platform | Clarity—Glooko | Clarity—Glooko | Libre view | Libre view | Carelink |
Accuracy (MARD) 1 | 9.0% | 8.2% | 9.3% | 7.9% | 10.6% |
Alerts/alarms | Yes | Yes | Yes | Yes | yes |
Potential Interfering Substances | Hydroxyurea | Hydroxyurea, acetaminophen | Vitamin C, Salicylic acid | Vitamin C, Salicylic acid | Acetaminophen, hydroxyurea |
Price indication 2 | $$ | $$$ | $ | $$ | $$ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bender, C.; Vestergaard, P.; Cichosz, S.L. The History, Evolution and Future of Continuous Glucose Monitoring (CGM). Diabetology 2025, 6, 17. https://doi.org/10.3390/diabetology6030017
Bender C, Vestergaard P, Cichosz SL. The History, Evolution and Future of Continuous Glucose Monitoring (CGM). Diabetology. 2025; 6(3):17. https://doi.org/10.3390/diabetology6030017
Chicago/Turabian StyleBender, Clara, Peter Vestergaard, and Simon Lebech Cichosz. 2025. "The History, Evolution and Future of Continuous Glucose Monitoring (CGM)" Diabetology 6, no. 3: 17. https://doi.org/10.3390/diabetology6030017
APA StyleBender, C., Vestergaard, P., & Cichosz, S. L. (2025). The History, Evolution and Future of Continuous Glucose Monitoring (CGM). Diabetology, 6(3), 17. https://doi.org/10.3390/diabetology6030017