An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates †
Abstract
:1. Photoplethysmographic Signal with Motion Artifacts (MAs)—An Introduction
2. Heart-Rate Variability (HRV)
3. Various Algorithms for Tracking of Heart Rates
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Subject | Dataset | Activity Type | TROIKA [8] | JOSS [9] | WFPV [28] | SpaMA [1] | ||||
---|---|---|---|---|---|---|---|---|---|---|
E1 | E2% | E1 | E2% | E1 | E2% | E1 | E2% | |||
1 | 2.87 | 2.18 | 1.33 | 1.19 | 1.23 | - | 1.23 | 1.14 | ||
2 | 2.75 | 2.37 | 1.75 | 1.66 | 1.26 | - | 1.59 | 1.30 | ||
3 | 1.91 | 1.50 | 1.47 | 1.27 | 0.72 | - | 0.57 | 0.45 | ||
4 | 2.25 | 2.00 | 1.48 | 1.41 | 0.98 | - | 0.44 | 0.31 | ||
5 | 1.69 | 1.22 | 0.69 | 0.51 | 0.75 | - | 0.47 | 0.31 | ||
6 | 3.16 | 2.51 | 1.32 | 1.09 | 0.91 | - | 0.61 | 0.45 | ||
7 | 1.72 | 1.27 | 0.71 | 0.54 | 0.67 | - | 0.54 | 0.40 | ||
8 | 1.83 | 1.47 | 0.56 | 0.47 | 0.91 | - | 0.40 | 0.33 | ||
9 | 1.58 | 1.28 | 0.49 | 0.41 | 0.54 | - | 0.40 | 0.32 | ||
10 | 4.00 | 2.49 | 3.81 | 2.43 | 2.61 | - | 2.63 | 1.59 | ||
11 | 1.96 | 1.29 | 0.78 | 0.51 | 0.94 | - | 0.64 | 0.42 | ||
12 | 3.33 | 2.30 | 1.04 | 0.81 | 0.98 | - | 1.20 | 0.86 | ||
mean ± std | 2.42 ± 0.8 | 1.82 ± 0.5 | 1.28 ± 0.9 | 1.02 ± 0.6 | 1.04 ± 0.5 | - | 0.89 ± 0.6 | 0.65 ± 0.4 | ||
13 14 15 | Type (2) | 3.58 9.66 2.31 | - | 3.41 7.29 2.73 | 4.25 9.80 2.21 | |||||
16 17 18 19 | 2 (IEEE Cup) | Type (3) | 4.93 3.07 2.67 3.11 | - | 3.18 3.01 4.46 3.58 | 2.11 2.52 3.23 3.98 | ||||
20 | Type (2) | 2.10 | - | 1.94 | 1.66 | |||||
21 22 | Type (3) | 3.22 4.35 | - | 2.56 3.12 | 2.02 3.28 | |||||
23 | Type (2) | 0.75 | - | 1.72 | 1.97 | |||||
mean ± std Type (1, 2) | 3.61 ± 2.2 | - | 3.36 ± 1.5 | 3.33 ± 2.2 | ||||||
mean ± std | 2.27 ± 2.0 | - | 1.93 ± 2.0 | 2.07 ± 1.7 | ||||||
Subject | Dataset | Activity Type | TROIKA | JOSS | WFPV | SpaMA | ||||
E1 | E2% | E1 | E2% | E1 | E2% | E1 | E2% | |||
24 | 0.88 | 0.91 | ||||||||
25 | 1.03 | 0.83 | ||||||||
26 | 1.10 | 0.90 | ||||||||
27 | 1.64 | 1.54 | ||||||||
28 | 3 | Type (4) | 1.41 | 1.12 | ||||||
29 | (Chon Lab) | 0.82 | 0.70 | |||||||
30 | 0.63 | 0.58 | ||||||||
31 | 4.78 | 3.87 | ||||||||
32 | 0.95 | 0.79 | ||||||||
33 | 0.62 | 0.52 | ||||||||
mean ± std | 1.38 ± 1.2 | 1.17 ± 1.0 | ||||||||
Total: | 1.86 ± 1.6 | 1.70 ± 1.8 | ||||||||
mean ± std |
Subject | Correlation | |
---|---|---|
LF 1 | HF | |
1 | 0.99 | 0.98 |
2 | 0.99 | 0.96 |
3 | 0.99 | 0.95 *2 |
4 | 1.00 | 0.99 |
5 | 1.00 | 0.99 |
6 | 0.99 | 0.96 * |
7 | 0.98 | 0.92 * |
8 | 0.97 | 0.90 * |
9 | 1.00 | 0.99 |
10 | 1.00 | 0.99 |
Mean | 0.99 | 0.96 |
Subjects | SDNN | meanNN | RMSSD | pNN50 | ||||
---|---|---|---|---|---|---|---|---|
SpaMa | Reference | SpaMa | Reference | SpaMa | Reference | SpaMa | Reference | |
1 | 2620.75 | 2566.47 | 10,480.89 | 10,480.72 | 33.24 | 18.05 | 0.001 | 0.020 |
2 | 2115.44 | 2079.58 | 9908.00 | 10,020.00 | 25.93 | 16.32 | 0.011 | 0.019 |
3 | 3173.73 | 3177.68 | 10,764.20 | 10,829.06 | 89.70 | 56.15 | 0.019 | 0.207 |
4 | 2517.78 | 2533.20 | 10,376.95 | 10,426.26 | 13.54 | 19.58 | 0.001 | 0.030 |
5 | 2654.42 | 2670.32 | 10,864.04 | 10,990.08 | 11.88 | 18.59 | 0.003 | 0.018 |
6 | 2012.53 | 1974.65 | 9737.35 | 9827.63 | 39.64 | 21.17 | 0.004 | 0.025 |
7 | 3056.36 | 2925.19 | 12,519.74 | 13,134.05 | 27.66 | 30.61 | 0.015 | 0.071 |
8 | 3133.76 | 2756.66 | 10,504.00 | 10,530.00 | 32.57 | 36.38 | 0.002 | 0.003 |
9 | 2195.08 | 2142.53 | 10,499.81 | 10,470.06 | 8.23 | 13.01 | 0.002 | 0.004 |
10 | 2454.57 | 2406.96 | 12,936.62 | 12,981.21 | 41.52 | 20.28 | 0.006 | 0.024 |
p-value | >0.05 | >0.05 | >0.05 | >0.05 |
ID | Activity Type | TROIKA [8] | JOSS [9] | SpaMA [1] | CNAFSD [31] | SPECTRAP [32] | WFPV [28] | [33] | NFEEMD [2] | |
---|---|---|---|---|---|---|---|---|---|---|
AAE AEP% | AAE AEP% | AAE AEP% | AAE AEP% | AAE AEP% | AAE AEP% | AAE AEP% | AAE AEP% | |||
1 | 2.29 2.18 | 1.33 1.19 | 1.23 1.14 | 1.66 1.42 | 1.18 1.04 | 1.25 1.15 | 1.72 1.50 | 1.43 1.19 | ||
2 | 2.19 2.37 | 1.75 1.66 | 1.59 1.30 | 1.56 1.44 | 2.42 2.33 | 1.41 1.30 | 1.33 1.30 | 1.15 1.03 | ||
3 | 2.00 1.50 | 1.47 1.27 | 0.57 0.45 | 0.65 0.53 | 0.86 0.66 | 0.71 0.59 | 0.90 0.75 | 0.75 0.59 | ||
4 | 2.15 2.00 | 1.48 1.41 | 0.44 0.31 | 1.48 1.51 | 1.38 1.31 | 0.97 0.88 | 1.28 1.20 | 1.24 1.12 | ||
5 | 2.01 1.22 | 0.69 0.51 | 0.47 0.31 | 0.77 0.60 | 0.92 0.74 | 0.75 0.57 | 0.93 0.69 | 0.91 0.68 | ||
6 | T0 | 2.76 2.51 | 1.32 1.09 | 0.61 0.45 | 1.12 0.90 | 1.37 1.14 | 0.92 0.75 | 1.41 1.20 | 1.25 0.99 | |
7 | 1.67 1.27 | 0.71 0.54 | 0.54 0.40 | 0.72 0.60 | 1.53 1.36 | 0.65 0.50 | 0.61 0.50 | 0.79 0.60 | ||
8 | 1.93 1.47 | 0.56 0.47 | 0.40 0.33 | 0.91 0.80 | 0.64 0.55 | 0.97 0.83 | 0.88 0.80 | 0.63 0.53 | ||
9 | 1.86 1.28 | 0.49 0.41 | 0.40 0.42 | 0.42 0.36 | 0.60 0.52 | 0.55 0.48 | 0.59 0.50 | 0.58 0.56 | ||
10 | 4.70 2.49 | 3.81 2.43 | 2.63 1.59 | 2.35 1.45 | 3.65 2.27 | 2.06 1.29 | 3.78 2.40 | 2.48 1.48 | ||
11 | 1.72 1.29 | 0.78 0.51 | 0.64 0.42 | 1.45 0.94 | 0.92 0.65 | 1.03 0.68 | 0.85 0.60 | 0.89 0.58 | ||
12 | 2.84 2.30 | 1.04 0.81 | 1.20 0.86 | 0.78 0.60 | 1.25 1.02 | 0.99 0.70 | 0.71 0.50 | 1.37 0.91 | ||
13 | - - | - - | 3.41 4.25 | - - | - - | 3.54 4.08 | - - | 3.20 3.59 | ||
14 | T1 | 6.63 8.76 | 8.07 10.9 | 7.29 9.80 | 7.71 10.6 | 4.89 6.29 | 9.59 12.2 | - - | 8.64 11.3 | |
15 | 1.94 2.56 | 1.61 2.01 | 2.73 2.21 | 1.62 2.02 | 1.58 1.98 | 2.57 3.16 | - - | 1.98 2.57 | ||
16 | 1.35 1.04 | 3.10 2.69 | 3.18 2.11 | 3.10 2.68 | 1.83 1.49 | 2.25 1.87 | - - | 1.47 1.14 | ||
17 | T2 | 7.82 4.88 | 7.01 4.49 | 3.01 2.52 | 7.00 4.49 | 3.05 2.00 | 3.01 1.99 | - - | 1.95 1.10 | |
18 | 2.46 2.00 | 2.99 2.52 | 4.46 3.23 | 2.99 2.52 | 1.62 1.36 | 2.73 2.29 | - - | 2.34 1.95 | ||
19 | 1.73 1.27 | 1.67 1.23 | 3.58 3.98 | 1.67 1.23 | 1.24 0.92 | 1.57 1.15 | - - | 1.47 1.08 | ||
20 | T1 | 3.33 3.90 | 2.80 3.46 | 1.94 1.66 | 2.45 3.00 | 2.04 2.23 | 2.10 2.41 | - - | 3.22 3.66 | |
21 22 | T2 | 3.41 2.43 2.69 2.12 | 1.88 1.32 0.92 0.74 | 2.56 2.02 3.12 3.28 | 1.81 1.26 0.92 0.74 | 2.49 1.81 1.16 0.92 | 3.44 2.45 1.61 1.26 | - - - | 3.54 2.49 1.16 0.93 | |
23 | T1 | 0.51 0.59 | 0.49 0.57 | 1.72 1.97 | 0.49 0.57 | 0.66 0.79 | 0.75 0.88 | - - | 0.53 0.62 | |
Mean ± SD | T0 | AAE | 2.34 + 0.83 | 1.28 + 0.90 | 0.89 + 0.60 | 1.16 + 0.55 | 1.50 + 0.86 | 1.02 + 0.41 | 1.25 + 0.87 | 1.12 + 0.51 |
1–12 | AEP% | 1.82 + 0.53 | 1.01 + 0.61 | 0.67 + 0.44 | 0.93 + 0.42 | 1.12 + 0.61 | 0.81 + 0.29 | 1.00 + 0.56 | 0.86 + 0.31 | |
T1– | AAE | - | - | 3.36 + 1.51 | - | - | 3.01 + 2.34 | - | 2.68 + 2.19 | |
T2 | AEP% | - | - | 3.36 + 2.30 | - | - | 3.07 + 3.17 | - | 2.76 + 3.01 | |
13-23 | AAE | 3.19 + 2.32 | 3.05 + 2.52 | 3.53 + 1.48 | 2.98 + 2.45 | 2.13 + 2.77 | 2.96 + 246 | - | 2.63 + 2.30 | |
Test | AEP% | 2.96 + 2.41 | 3.00 + 3.04 | 3.28 + 2.40 | 2.91 + 2.95 | 2.04 + 3.01 | 2.97 + 3.32 | - | 2.68 + 3.16 | |
1–12 | ||||||||||
14-23 | AAE | 2.78 + 1.67 | 2.09 + 1.99 | 2.01 + 1.70 | 1.98 + 1.90 | 1.79 + 1.87 | 1.90 + 1.91 | - | 1.81 + 1.73 | |
14-23 | AEP% | 2.34 + 1.73 | 1.92 + 2.27 | 1.85 + 2.09 | 1.83 + 2.20 | 1.52 + 1.22 | 1.79 + 2.44 | - | 1.68 + 2.27 | |
All | AAE | - | - | 2.07 + 1.69 | - | - | 1.97 + 1.90 | - | 1.87 + 1.71 | |
1–23 | AEP% | - | - | 1.96 + 2.10 | - | - | 1.89 + 2.43 | - | 1.77 ± 2.26 |
Dataset | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
AAE(BPM) | 1.79 | 1.52 | 0.82 | 1.45 | 1.09 | 1.35 | 1.20 | 0.51 |
Dataset | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
AAE(BPM) | 0.74 | 1.95 | 1.00 | 1.77 | 3.39 | 10.99 | 3.10 | 1.94 |
Dataset | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mean ± SD |
AAE(BPM) | 3.62 | 2.69 | 1.94 | 2.80 | 4.65 | 2.44 | 0.50 | 2.32 + 2.17 |
Algorithm | DTT (s) |
---|---|
TifMA | 0.91 ± 0.59 |
Hjorth | 2.17 ± 0.37 |
KSE | 4.24 ± 2.42 |
TDV | 2.75 ± 0.96 |
Dataset | TROIKA [8] | JOSS [9] | NLMS + OSC-ANFc [50] | Combination of Adaptive Filters [51] | Noise-Robust Heart-Rate Estimation Algorithm |
---|---|---|---|---|---|
1 | 2.29 | 1.33 | 1.75 | 1.34 | 1.33 |
2 | 2.19 | 1.75 | 1.94 | 0.70 | 1.92 |
3 | 2.00 | 1.47 | 1.17 | 0.66 | 0.83 |
4 | 2.15 | 1.48 | 1.67 | 0.70 | 1.03 |
5 | 2.01 | 0.69 | 0.95 | 0.63 | 0.54 |
6 | 2.76 | 1.32 | 1.22 | 0.86 | 1.44 |
7 | 1.67 | 0.71 | 0.91 | 0.66 | 0.65 |
8 | 1.93 | 0.56 | 1.17 | 0.58 | 0.56 |
9 | 1.86 | 0.49 | 0.87 | 0.52 | 0.43 |
10 | 4.70 | 3.81 | 2.95 | 2.46 | 2.51 |
11 | 1.72 | 0.78 | 1.15 | 1.21 | 0.83 |
12 | 2.84 | 1.04 | 1.00 | 0.74 | 1.79 |
Av. ± std | 2.34 ± 0.79 | 1.29 ± 0.86 | 1.40 ± 0.58 | 0.94 ± 0.52 | 1.16 ± 0.62 |
Dataset | TROIKA [8] | NLMS + OSC-ANFc [50] | Combination of Adaptive Filters [51] | Noise-Robust Heart-Rate Estimation Algorithm |
---|---|---|---|---|
1 | 1.90 | 1.59 | 1.17 | 1.06 |
2 | 1.87 | 1.99 | 0.70 | 2.18 |
3 | 1.66 | 1.02 | 0.57 | 0.72 |
4 | 1.82 | 1.51 | 0.63 | 0.97 |
5 | 1.49 | 0.75 | 0.49 | 0.41 |
6 | 2.25 | 1.05 | 0.67 | 1.23 |
7 | 1.26 | 0.72 | 0.50 | 0.50 |
8 | 1.62 | 1.04 | 0.50 | 0.50 |
9 | 1.59 | 0.76 | 0.46 | 0.38 |
10 | 2.93 | 0.93 | 1.56 | 1.59 |
11 | 1.15 | 0.79 | 0.80 | 0.57 |
12 | 1.99 | 0.79 | 0.55 | 1.21 |
References
- Salehizadeh, S.M.A.; Dao, D.; Bolkhovsky, J.; Cho, C.; Mendelson, Y.; Chon, K.H. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors 2016, 16, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiajia, S.; Dan, L.; Xiaoyuan, M.; Guowei, T.; Jianming, W. A Robust Dynamic Heart-Rate Detection Algorithm Framework during Intense Physical Activities Using Photoplethysmographic Signals. Sensors 2017, 17, 2450. [Google Scholar]
- Yilmaz, T.; Foster, R.; Hao, Y. Detecting Vital Signs with Wearable Wireless Sensors. Sensors 2010, 10, 10837–10862. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Truitt, P.; Hete, B.F.; Starr, E.W. Noninvasive Photoplethysmographic Sensor Platform for Mobile Animals. U.S. Patent 8,688,184 B2, 1 April 2004. [Google Scholar]
- Zhang, Y.; Song, S.; Vullings, R.; Biswas, D.; Simões-Capela, N.; Helleputte, N.; van Hoof, C.; Groenendaal, W. Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors 2019, 19, 673. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Thakor, N. Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 2015, 62, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Photoplethysmography-based heart rate monitoring in physical activities via joint sparse Spectrum reconstruction. IEEE Trans. Biomed. Eng. 2015, 62, 1902–1910. [Google Scholar] [CrossRef] [Green Version]
- Jubran, A. Pulse oximetry. Crit. Care 1999, 3, R11–R17. [Google Scholar] [CrossRef]
- Maeda, Y.; Sekine, M.; Tamura, T. Relationship between measurement site and motion artifacts in Wearable reflected photoplethysmography. J. Med. Syst. 2011, 35, 969–976. [Google Scholar] [CrossRef]
- Thakor, N.V.; Zhu, Y.S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 1991, 38, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Wójcikowski, M.; Pankiewicz, B. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Sensors 2020, 20, 1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepa´nski, A.; Saeed, K. A Mobile Device System for Early Warning of ECG Anomalies. Sensors 2014, 14, 11031–11044. [Google Scholar] [CrossRef] [PubMed]
- Hertzman, A.B. Observations on the finger volume pulse recorded photoelectrically. Am. J. Physiol. 1937, 119, 334–335. [Google Scholar]
- Laughlin, M.H. Cardiovascular response to exercise. Am. J. Physiol. 1999, 277, S244–S259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, D.K.; Chong, J.W.; McManus, D.; Darling, C.; Mendelson, Y.; Chon, K.H. Photoplethysmograph Signal Reconstruction based on a Novel Motion Artifact Detection-Reduction Approach. Part II: Motion and Noise Artifact Removal. Ann. Biomed. Eng. 2014, 42, 2251–2263. [Google Scholar]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Phys. Meas. 2007, 28, R1. [Google Scholar] [CrossRef] [Green Version]
- Nogami, H.; Iwasaki, W.; Morita, N.; Takigawa, R. Relationship between AC/DC Ratio and Light-blocking Structure for Reflective Photoplethysmographic Sensor. Sens. Mater. 2018, 30, 3021–3028. [Google Scholar] [CrossRef]
- Asada, H.H.; Shaltis, P.; Reisner, A.; Rhee, S.; Hutchinson, R.C. Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng. Med. Biol. Mag. 2003, 22, 28. [Google Scholar]
- Chen, Y.; Li, D.; Li, Y.; Ma, X.; Wei, J. Use moving average filter to reduce noises in wearable PPG during continuous monitoring. Ehealth 360° 2017, 181, 193–203. [Google Scholar]
- Lee, B.; Han, J.; Baek, H.J.; Shin, J.H.; Park, K.S.; Yi, W.J. Improved elimination of motion artifacts from a photoplethysmographic signal using a kalman smoother with simultaneous accelerometry. Physiol. Meas. 2010, 31, 1585. [Google Scholar] [CrossRef] [PubMed]
- Raghuram, M.; Madhav, K.V.; Krishna, E.H.; Reddy, K.A. Evaluation of Wavelets for Reduction of Motion Artifacts in Photoplethysmographic Signals. In Proceedings of the 2010, 10th International Conference on Information Sciences Signal Processing and their Applications (ISSPA), KualaLumpur, Malaysia, 10–13 May 2010; pp. 460–463. [Google Scholar]
- Reddy, K.A.; Kumar, V.J. Motion Artifact Reduction in Photoplethysmographic Signals Using Singular Value Decomposition. In Proceedings of the IMTC Instrumentation and Measurement Technology Conference, Warsaw, Poland, 1–3 May 2007. [Google Scholar]
- Sun, X.; Yang, P.; Li, Y.; Gao, Z.; Zhang, Y.-T. Robust Heart Beat Detection from Photoplethysmography Interlaced with Motion Artifacts Based on Empirical Mode Decomposition. In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Hong Kong, China, 5–7 January 2012; pp. 775–778. [Google Scholar]
- Kim, B.S.; Yoo, S.K. Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans. Biomed. Eng. 2006, 53, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Kawanaka, H.; Bhuiyan, M.S.; Oguri, K. Estimating Heart Rate Using Wrist-Type Photoplethysmography and Acceleration Sensor While Running. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 2901–2904. [Google Scholar]
- Temko, A. Estimation of Heart Rate from Photoplethysmography during Physical Exercise using Wiener Filtering and the Phase Vocoder. In Proceedings of the IEEE EMBS International Conference on Engineering in Medicine and Biology, Milan, Italy, 25–29 August 2015. [Google Scholar]
- Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Processing 2005, 53, 2477–2488. [Google Scholar] [CrossRef]
- Khan, E.; Al Hossain, F.; Uddin, S.Z.; Alam, S.K.; Hasan, M.K. A robust heart rate monitoring scheme using photoplethysmographic signals corrupted by intense motion artifacts. IEEE Trans. Biomed. Eng. 2016, 63, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Cheng, Y.; He, W.; Hou, M.; Zhang, Z. Combining nonlinear adaptive filtering and signal decomposition for motion artifac removal in wearable photoplethysmography. IEEE Sens. J. 2016, 16, 7133–7141. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Z. Photoplethysmography-based heart rate monitoring using asymmetric least squares spectrum subtraction and bayesian decision theory. IEEE Sens. J. 2015, 15, 7161–7168. [Google Scholar] [CrossRef]
- Mashhadi, M.B.; Asadi, E.; Eskandari, M.; Kiani, S.; Marvasti, F. Heart rate tracking using wrist-type photoplethysmographic (PPG) signals during physical exercise with simultaneous accelerometry. IEEE Signal Process. Lett. 2015, 23, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Laroche, J.; Dolson, M. Improved phase vocoder time-scale modification of audio. IEEE Trans. Speech Audio Process. 1999, 7, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- QRS Complexes. Available online: https://co.grand.co.us/DocumentCenter/View/639/QRS-Complexes-Fast-and-Easy-ECGs-Shade--Wesley (accessed on 13 January 2022).
- Yousefi, R.; Nourani, M.; Ostadabbas, S.; Panahi, I.M. A Motion-Tolerant Adaptive Algorithm for Wearable Photoplethysmographic Biosensors. IEEE J. Biomed. Health Inform. 2014, 18, 670–681. [Google Scholar] [CrossRef]
- Jadhav, M.; Thakur, T.; Yatari, S. Design and Implementation of an Adaptive 32 order FIR Filter using FPGA. In Proceedings of the International Conference On Emanations in Modern Technology and Engineering (ICEMTE-2017), Maharashtra, India, 4–5 March 2017; Volume 5, pp. 162–165. [Google Scholar]
- Kartheek, B.V.; Manojkumar, S.B.; Anandaraju, M.B. Design and Implementation of Modified Adaptive Filtering Algorithm for Noise Cancellation in Speech Signal on FPGA for Minimum Resource Usage. Int. J. Inventive Eng. Sci. (IJIES) 2013, 1, 18–21. [Google Scholar]
- Alkhoury, L.; Choi, J.; Wang, C. Heart-rate tuned comb filters for processing photoplethysmogram (PPG) signals in pulse oximetry. J. Clin. Monit. Comput. 2021, 35, 797–813. [Google Scholar] [CrossRef]
- Dao, D.; Salehizadeh, S.M.A.; Noh, Y.; Chong, J.W.; Cho, C.H.; McManus, D.; Darling, C.E.; Mendelson, Y.; Chon, K.H. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates from Photoplethysmographic Signals Using Time-Frequency Spectral Features. IEEE J. Biomed. Health Inform. 2017, 21, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.; María Vergara, J.; Laguna, P. Detection of decreases in the amplitude fluctuation of pulse photoplethysmography signal as indication of obstructive sleep apnea syndrome in children. Biomed. Signal Process. Control 2008, 3, 27–277. [Google Scholar] [CrossRef]
- Selvaraj, N.; Mendelson, Y.; Shelley, K.H.; Silverman, D.G.; Chon, K.H. Statistical approach for the detection of motion noise artifacts in Photoplethysmogram. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 2011, 4972–4975. [Google Scholar] [PubMed]
- Chong, J.W.; Dao, D.K.; Salehizadeh, S.M.A.; McManus, D.D.; Darling, C.E.; Chon, K.H.; Mendelson, Y. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection. Ann. Biomed. Eng. 2014, 42, 2238–2250. [Google Scholar] [CrossRef] [PubMed]
- JaeWook, S.; Cho, J. Noise-Robust Heart Rate Estimation Algorithm from Photoplethysmography Signal with Low Computational Complexity. J. Healthcare Eng. 2019, 2019, 6283279. [Google Scholar]
- Liao, H. Two discrete oscillator based adaptive notch filters (OSC ANFs) for noisy sinusoids. IEEE Trans. Signal Processing 2005, 53, 528–538. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, S.E.; Song, W.J. Noise-robust normalised subband adaptive filtering. Electron. Lett. 2012, 48, 11–12. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Z.; Wang, Z.; Chen, B. Improved affine projection subband adaptive filter for high background noise environments. Signal Processing 2017, 137, 356–362. [Google Scholar] [CrossRef]
- 2015 IEEE Signal Processing Cup. Available online: http://www.signalprocessingsociety.org/spcup2015/index.html (accessed on 20 January 2022).
- Fallet, S.; Vesin, J.M. Robust heart rate estimation using wrist-type photoplethysmographic signals during physical exercise: an approach based on adaptive ltering. Physiol. Meas. 2017, 38, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, K.R.; Bhaskar, M. Heart rate estimation from photoplethysmography signal for wearable health monitoring devices. Biomed. Signal Processing Control 2019, 50, 1–9. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obi, A.I. An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates. Eng. Proc. 2021, 10, 77. https://doi.org/10.3390/engproc2021010077
Obi AI. An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates. Engineering Proceedings. 2021; 10(1):77. https://doi.org/10.3390/engproc2021010077
Chicago/Turabian StyleObi, Amarachukwu Ikechukwu. 2021. "An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates" Engineering Proceedings 10, no. 1: 77. https://doi.org/10.3390/engproc2021010077
APA StyleObi, A. I. (2021). An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates. Engineering Proceedings, 10(1), 77. https://doi.org/10.3390/engproc2021010077