Quantification of Losses in a Photovoltaic System: A Review †
Abstract
:1. Introduction
2. Quantification of Losses in a Photovoltaic System
2.1. Losses in a Photovoltaic Cell
2.2. Photovoltaic Array Losses
2.3. System-Level Losses
3. Possible Ways to Combat Losses
3.1. Addressing Photovoltaic Cell-Level Losses
3.2. Addressing Photovoltaic Array Losses
3.3. System-Level Losses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anvari-Moghaddam, A.; Vahidinasab, V.; Mohammadi-Ivatloo, B.; Razzaghi, R.; Mohammadi, F. Emerging technologies for the energy systems of the future. Inventions 2021, 6, 23. [Google Scholar] [CrossRef]
- McKuin, B.; Zumkehr, A.; Ta, J.; Bales, R.; Viers, J.H.; Pathak, T.; Campbell, J.E. Energy and water co-benefits from covering canals with solar panels. Nat. Sustain. 2021, 4, 609–617. [Google Scholar] [CrossRef]
- Tauqeer, H.A.; Saeed, F.; Yousuf, M.H.; Ahmed, H.; Idrees, A.; Khan, M.H.; Gelani, H.E. Proposed model of sustainable resource management for smart grid utilization. World Electr. Veh. J. 2021, 12, 70. [Google Scholar] [CrossRef]
- Olczak, P.; Olek, M.; Matuszewska, D.; Dyczko, A.; Mania, T. Monofacial and bifacial micro pv installation as element of energy transition—The case of poland. Energies 2021, 14, 499. [Google Scholar] [CrossRef]
- Saeed, F.; Yousuf, M.H.; Tauqeer, H.A.; Akhtar, M.R.; Abbas, Z.A.; Khan, M.H. Performance benchmark of multi-layer neural network based solar MPPT for PV applications. In Proceedings of the 2021 International Conference on Emerging Power Technologies, ICEPT 2021, Topi, Pakistan, 10–11 April 2021. [Google Scholar]
- Ahmed, W.; Sheikh, J.A.; Farjana, S.H.; Mahmud, M.A.P. Defects impact on pv system ghg mitigation potential and climate change. Sustainability 2021, 13, 7793. [Google Scholar] [CrossRef]
- Saeed, F.; Waris, M.D.; Rehman, T.U.; Khan, M.A.; Khan, M.H.; Gelani, H.E. A Comparative Study of Grid-Tied PV Systems Employing CIGS and Crystalline Solar Modules. In Proceedings of the 2021 IEEE Mohammad Ali Jinnah University International Conference on Computing (MAJICC), Karachi, Pakistan, 15–17 July 2021; pp. 1–7. [Google Scholar]
- Saeed, F.; Tauqeer, H.A.; Idrees, A.; Ali, M.Z.; Raza, A.; Khan, M.A. Buffer Layered PbS Colloidal Quantum Dot Solar Cell with Enhanced Efficiency. In Proceedings of the 2021 4th International Conference on Energy Conservation and Efficiency, ICECE 2021—Proceedings, Lahore, Pakistan, 16–17 March 2021. [Google Scholar]
- Saeed, F.; Abbas, Z.A.; Akhtar, M.R.; Yousuf, M.H.; Idrees, A.; Tauqeer, H.A. Intelligent Hybrid Energy Resource Connected Demand Side Load Management System-Case of Pakistan. In Proceedings of the 2021 4th International Conference on Energy Conservation and Efficiency, ICECE 2021—Proceedings, Lahore, Pakistan, 16–17 March 2021. [Google Scholar]
- Kapsalis, V.; Kyriakopoulos, G.; Zamparas, M.; Tolis, A. Investigation of the photon to charge conversion and its implication on photovoltaic cell efficient operation. Energies 2021, 14, 3022. [Google Scholar] [CrossRef]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Amin, N.; Karim, M.R.; Alothman, Z.A. Optical losses of frontal layers in superstrate cds/cdte solar cells using opal2. Coatings 2021, 11, 943. [Google Scholar] [CrossRef]
- Luo, D.; Su, R.; Zhang, W.; Gong, Q.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020, 5, 44–60. [Google Scholar] [CrossRef]
- López, E.; Martí, A.; Antolín, E.; Luque, A. On the potential of silicon intermediate band solar cells. Energies 2020, 13, 3044. [Google Scholar] [CrossRef]
- Vasiliev, M.; Nur-E-Alam, M.; Alameh, K. Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. Energies 2019, 12, 1080. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Prochowicz, D.; Saliba, M.; Boix, P.P.; Zakeeruddin, S.M.; Grätzel, M. Interfacial kinetics of efficient perovskite solar cells. Crystals 2017, 7, 252. [Google Scholar] [CrossRef]
- Min, K.H.; Min, K.H.; Kim, T.; Kang, M.G.; Song, H.E.; Kang, Y.; Lee, H.S.; Kim, D.; Park, S.; Lee, S.H. An analysis of fill factor loss depending on the temperature for the industrial silicon solar cells. Energies 2020, 13, 2931. [Google Scholar] [CrossRef]
- Kosyachenko, L.A.; Mathew, X.; Paulson, P.D.; Lytvynenko, V.Y.; Maslyanchuk, O.L. Optical and recombination losses in thin-film Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 291–302. [Google Scholar] [CrossRef]
- Bai, Q.; Yang, H.; Cheng, X.; Wang, H. Recombination parameters of the diffusion region and depletion region for crystalline silicon solar cells under different injection levels. Appl. Sci. 2020, 10, 4887. [Google Scholar] [CrossRef]
- Bosman, L.B.; Leon-Salas, W.D.; Hutzel, W.; Soto, E.A. PV system predictive maintenance: Challenges, current approaches, and opportunities. Energies 2020, 16, 1398. [Google Scholar] [CrossRef] [Green Version]
- Altıntaş, M.; Arslan, S. The study of dust removal using electrostatic cleaning system for solar panels. Sustainability 2021, 13, 9454. [Google Scholar] [CrossRef]
- Vieira, R.G.; de Araújo, F.M.U.; Dhimish, M.; Guerra, M.I.S. A comprehensive review on bypass diode application on photovoltaic modules. Energies 2020, 13, 2472. [Google Scholar] [CrossRef]
- Bai, J.; Zong, X. Global solar radiation transfer and its loss in the atmosphere. Appl. Sci. 2021, 11, 2651. [Google Scholar] [CrossRef]
- Derbeli, M.; Barambones, O.; Silaa, M.Y.; Napole, C. Real-time implementation of a new MPPT control method for a DC-DC boost converter used in a PEM fuel cell power system. Actuators 2020, 9, 105. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, J.; Qian, H.; Shen, H.; Wei, Q.; Lian, W.; Ni, Z.; Jie, J.; Zhang, X.; Xie, L. The impact of thermal treatment on light-induced degradation of multicrystalline silicon PERC solar cell. Energies 2019, 12, 416. [Google Scholar] [CrossRef] [Green Version]
- Maxim, A.A.; Sadyk, S.N.; Aidarkhanov, D.; Surya, C.; Ng, A.; Hwang, Y.H.; Atabaev, T.S.; Jumabekov, A.N. PMMA thin film with embedded carbon quantum dots for post-fabrication improvement of light harvesting in perovskite solar cells. Nanomaterials 2020, 10, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufo-López, R.; Cortés-Arcos, T.; Artal-Sevil, J.S.; Bernal-Agustín, J.L. Comparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems. Appl. Sci. 2021, 11, 1099. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, F.; Zohaib, A. Quantification of Losses in a Photovoltaic System: A Review. Eng. Proc. 2021, 11, 35. https://doi.org/10.3390/ASEC2021-11200
Saeed F, Zohaib A. Quantification of Losses in a Photovoltaic System: A Review. Engineering Proceedings. 2021; 11(1):35. https://doi.org/10.3390/ASEC2021-11200
Chicago/Turabian StyleSaeed, Faisal, and Abdullah Zohaib. 2021. "Quantification of Losses in a Photovoltaic System: A Review" Engineering Proceedings 11, no. 1: 35. https://doi.org/10.3390/ASEC2021-11200
APA StyleSaeed, F., & Zohaib, A. (2021). Quantification of Losses in a Photovoltaic System: A Review. Engineering Proceedings, 11(1), 35. https://doi.org/10.3390/ASEC2021-11200