Computational Analysis of VAWT Micro Wind Farm for Urban Rooftops †
Abstract
:1. Introduction
2. Methods
CFD Simulation Parameters
3. Results and Discussion
3.1. Building Analysis
3.1.1. Results
3.1.2. Discussion
3.2. Single Turbine Analysis
3.2.1. Results
3.2.2. Discussion
3.3. Horizontally Distributed Turbines Analysis
3.3.1. Results
3.3.2. Discussion
4. Conclusions and Future Work
Data Availability Statement
Conflicts of Interest
References
- Abbasi, K.; Jiao, Z.; Shahbaz, M.; Khan, A. Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis. Energy Explor. Exploit. 2020, 38, 1946–1967. [Google Scholar] [CrossRef]
- Ali, A.; Irshad, K.; Memon, A.H.; Arif, S.H. Integrating Pakistan’s electricity demand with demographic and energy indicators: Analysis and forecast. In Proceedings of the 2019 15th International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 2–3 December 2019; Available online: https://ieeexplore.ieee.org/abstract/document/8994416 (accessed on 25 September 2021).
- Javed, M.S.; Raza, R.; Hassan, I.; Saeed, R.; Shaheen, N.; Iqbal, J.; Shaukat, S.F. The energy crisis in Pakistan: A possible solution via biomass-based waste. J. Renew. Sustain. Energy 2016, 8, 043102. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Zervos, A. Wind Power Development in Europe. Proc. IEEE 2001, 89, 1765–1782. [Google Scholar] [CrossRef]
- Vairagi, B.D.; Tandon, A.; Dewra, R.S. Performance Analysis of DFIG Based Standalone 2.2 kW Laboratory Prototype Wind Turbine Emulator. J. Sci. Approach 2017, 1, 16–21. [Google Scholar] [CrossRef]
- Akkarachaiphant, T.; Chatthong, B.; Tirawanichakul, Y. Preliminary design and testing of VAWT blade for low wind speed using CFD. J. Phys. Conf. Ser. 2019, 1380, 12130. [Google Scholar] [CrossRef]
- SST K-Omega Model—CFD-Wiki, the Free CFD Reference. Available online: https://www.cfd-online.com/Wiki/SST_k-omega_model (accessed on 23 August 2021).
- Ansys Fluent—Fluid Simulation Software. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 23 August 2021).
Parameter 2 | Values |
---|---|
Wind speed | 2 m/s |
Air density | 1.225 kg/m3 |
Air viscosity | 1.7894 × 10−5 kg/m·s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauhar, T.A.; Miran, S.; Arif, W.; Muneer, A.; Mukaddas, Z. Computational Analysis of VAWT Micro Wind Farm for Urban Rooftops. Eng. Proc. 2021, 12, 6. https://doi.org/10.3390/engproc2021012006
Jauhar TA, Miran S, Arif W, Muneer A, Mukaddas Z. Computational Analysis of VAWT Micro Wind Farm for Urban Rooftops. Engineering Proceedings. 2021; 12(1):6. https://doi.org/10.3390/engproc2021012006
Chicago/Turabian StyleJauhar, Tahir Abbas, Sajjad Miran, Waseem Arif, Asad Muneer, and Zara Mukaddas. 2021. "Computational Analysis of VAWT Micro Wind Farm for Urban Rooftops" Engineering Proceedings 12, no. 1: 6. https://doi.org/10.3390/engproc2021012006
APA StyleJauhar, T. A., Miran, S., Arif, W., Muneer, A., & Mukaddas, Z. (2021). Computational Analysis of VAWT Micro Wind Farm for Urban Rooftops. Engineering Proceedings, 12(1), 6. https://doi.org/10.3390/engproc2021012006