Efficient Detection of Fe3+ and Cr2O72− Ions in Water by Zn-Tetrazolate-Based Two-Dimensional Metal-Organic Framework: A Comparative Study †
Abstract
:1. Introduction
2. Methods
3. Result and Discussion
3.1. Structural Description
3.2. Fluorescence Properties
3.3. Sensing Mechanism
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Ma, H.; Zhang, B.; Qian, J.; Cao, T.; Feng, H.; Li, W.; Dong, Y.; Qin, W. Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury (II), chloride and Cr (VI) via different mechanisms. Microchim. Acta 2019, 186, 341. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal–organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 2011, 112, 1126–1162. [Google Scholar] [CrossRef]
- Rasheed, T.; Nabeel, F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord. Chem. Rev. 2019, 401, 213065. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Goswami, R.; Smith, V.J.; Bajaj, H.C.; Neogi, S. Pore Wall-Functionalized Luminescent Cd (II) Framework for Selective CO2 Adsorption, Highly Specific 2, 4, 6-Trinitrophenol Detection, and Colorimetric Sensing of Cu2+ Ions. ACS Sustain. Chem. Eng. 2018, 6, 10295–10306. [Google Scholar] [CrossRef]
- Zhou, E.-L.; Qin, C.; Tian, D.; Wang, X.-L.; Yang, B.-X.; Huang, L.; Shao, K.-Z.; Su, Z.-M. A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu2+ and sensitization of Ln3+. J. Mater. Chem. C 2018, 6, 7874–7879. [Google Scholar] [CrossRef]
- Zhang, H.; Sheng, T.; Hu, S.; Zhuo, C.; Li, H.; Fu, R.; Wen, Y.; Wu, X. Stitching 2D polymeric layers into flexible 3D metal–organic frameworks via a sequential self-assembly approach. Cryst. Growth Des. 2016, 16, 3154–3162. [Google Scholar] [CrossRef]
- Talha, K.; He, T.; Xie, L.-H.; Wang, B.; Zhao, M.-J.; Zhang, Y.-Z.; Chen, Q.; Li, J.-R. A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized via single-crystal transformation. New J. Chem. 2020, 44, 11829–11834. [Google Scholar] [CrossRef]
- Swaidan, A.; Borthakur, P.; Boruah, P.K.; Das, M.R.; Barras, A.; Hamieh, S.; Toufaily, J.; Hamieh, T.; Szunerits, S.; Boukherroub, R. A facile preparation of CuS-BSA nanocomposite as enzyme mimics: Application for selective and sensitive sensing of Cr (VI) ions. Sens. Actuators B Chem. 2019, 294, 253–262. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, H.; Sun, L.; Yan, Y.; Wang, B.; Liang, Z.; Wang, L.; Li, J. Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Cryst. Growth Des. 2018, 18, 7683–7689. [Google Scholar] [CrossRef]
- Alamgir, A.; Ahamd, N.; Xie, L.-H.; Zhang, X.; Li, J.-R. Construction of Zeolite A Type Multivariate Metal-Organic Framework for Selective Sensing of Fe3+ and Cr2O72. Cryst. Eng. Comm. 2021, 23, 4923–4929. [Google Scholar]
- Sun, S.; Wang, F.; Sun, Y.; Guo, X.; Ma, R.; Zhang, M.; Guo, H.; Xie, Y.; Hu, T. Construction of a Dual-Function Metal–Organic Framework: Detection of Fe3+, Cu2+, Nitroaromatic Explosives, and a High Second-Harmonic Generation Response. Ind. Eng. Chem. Res. 2019, 58, 17784–17791. [Google Scholar] [CrossRef]
- Liu, L.-L.; Yu, Y.-Z.; Zhao, X.-J.; Wang, Y.-R.; Cheng, F.-Y.; Zhang, M.-K.; Shu, J.-J.; Liu, L. A robust Zn (ii)/Na (i)-MOF decorated with [(OAc)2 (H2 O)2]n2n− anions for the luminescence sensing of copper ions based on the inner filter effect. Dalton Trans. 2018, 47, 7787–7794. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Y.; Bai, Z.; Li, Y.; Wang, Y.; Chen, L.; Xu, L.; Diwu, J.; Chai, Z.; Wang, S. Hydrolytically stable luminescent cationic metal organic framework for highly sensitive and selective sensing of chromate anions in natural water systems. ACS Appl. Mater. Interfaces 2017, 9, 16448–16457. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talha, K.; Alamgir; Li, J.-R. Efficient Detection of Fe3+ and Cr2O72− Ions in Water by Zn-Tetrazolate-Based Two-Dimensional Metal-Organic Framework: A Comparative Study. Eng. Proc. 2021, 12, 95. https://doi.org/10.3390/engproc2021012095
Talha K, Alamgir, Li J-R. Efficient Detection of Fe3+ and Cr2O72− Ions in Water by Zn-Tetrazolate-Based Two-Dimensional Metal-Organic Framework: A Comparative Study. Engineering Proceedings. 2021; 12(1):95. https://doi.org/10.3390/engproc2021012095
Chicago/Turabian StyleTalha, Khalid, Alamgir, and Jian-Rong Li. 2021. "Efficient Detection of Fe3+ and Cr2O72− Ions in Water by Zn-Tetrazolate-Based Two-Dimensional Metal-Organic Framework: A Comparative Study" Engineering Proceedings 12, no. 1: 95. https://doi.org/10.3390/engproc2021012095
APA StyleTalha, K., Alamgir, & Li, J. -R. (2021). Efficient Detection of Fe3+ and Cr2O72− Ions in Water by Zn-Tetrazolate-Based Two-Dimensional Metal-Organic Framework: A Comparative Study. Engineering Proceedings, 12(1), 95. https://doi.org/10.3390/engproc2021012095