Data-Driven Analysis of Departure Procedures for Aviation Noise Mitigation †
Abstract
:1. Introduction
2. Background
2.1. Aviation Environmental Design Tool (AEDT)
2.2. Noise Abatement Departure Procedures (NADPs)
3. Method
3.1. Data Processing
3.2. Trajectory Comparisons
3.3. Noise Modeling
4. Results
4.1. Representative NADP Profile and Reduced Thrust
4.2. Trajectory Comparison by Airline–Stage Length Group
4.3. Noise Comparison Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AEDT | Aviation Environmental Design Tool |
AFE | Above Field Elevation |
FAA | Federal Aviation Administration |
FPP | Fixed-Point Profile |
ICAO | International Civil Aviation Organization |
MPE | Mean Percentage Error |
MSL | Mean Sea Level |
NADP | Noise Abatement Departure Procedure |
RT | Reduced Thrust |
SEL | Sound Exposure Level |
SL | Stage Length |
References
- Federal Aviation Administration, Automatic Dependent Surveillance—Broadcast (ADS-B). 2020. Available online: https://www.faa.gov/nextgen/programs/adsb/ (accessed on 20 December 2021).
- Ganic, E.; Dobrota, M.; Babic, O. Noise abatement measures at airports: Contributing factors and mutual dependence. Appl. Acoust. 2016, 112, 32–40. [Google Scholar] [CrossRef]
- Federal Aviation Administration Advisory Circular 91-53A–Noise Abatement Departure Profiles. 1983. Available online: https://www.faa.gov/documentLibrary/media/Advisory_Circular/ac91-53.pdf (accessed on 20 December 2021).
- International Civil Aviation Organization Doc 8168 OPS/611 Procedures for Air Navigation Services, Aircraft Operations: Volume I Flight Procedures. 2006. Available online: https://store.icao.int/en/procedures-for-air-navigation-services-pans-aircraft-operations-volume-i-flight-procedures-doc-8168 (accessed on 20 December 2021).
- Federal Aviation Administration, AEDT and Legacy Tools Comparisons. 2016. Available online: https://aedt.faa.gov/Documents/Comparison_AEDT_Legacy_Summary.pdf (accessed on 20 December 2021).
- ASCENT Project 045 Annual Report 2018. Available online: https://ascent.aero/documents/2019/07/ascent-project-045-2018-annual-report.pdf (accessed on 20 December 2021).
- Gao, Z.; Behere, A.; Li, Y.; Lim, D.; Kirby, M.; Mavris, D.N. Development and Analysis of Improved Departure Modeling for Aviation Environmental Impact Assessment. J. Aircr. 2021, 58, 847–857. [Google Scholar] [CrossRef]
- Behere, A.; Bhanpato, J.; Puranik, T.G.; Kirby, M.; Mavris, D.N. Data-driven Approach to Environmental Impact Assessment of Real-World Operations. In AIAA Scitech 2021 Forum: Virtual, 11–15. 19–21 January 2021; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Lim, D.; Behere, A.; Jin, Y.C.D.; Li, Y.; Kirby, M.; Gao, Z.; Mavris, D.N. Improved Noise Abatement Departure Procedure Modeling for Aviation Environmental Impact Assessment. In AIAA Scitech 2020 Forum: Orlando, FL, USA, 6–10 January 2020; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Behere, A.; Isakson, L.; Puranik, T.G.; Li, Y.; Kirby, M.; Mavris, D.N. Aircraft Landing and Takeoff Operations Clustering for Efficient Environmental Impact Assessment. In AIAA Aviation 2020 Forum: Reston, VA, USA, 15–19 June 2020; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- ASCENT Project 045 Annual Report 2020. Available online: https://s3.wp.wsu.edu/uploads/sites/2479/2021/03/ASCENT-Project-045-2020-Annual-Report.pdf (accessed on 20 December 2021).
- Thomas, J.L.; Hansman, R.J. Framework for Analyzing Aircraft Community Noise Impacts of Advanced Operational Flight Procedures. J. Aircr. 2019, 56, 1407–1417. [Google Scholar] [CrossRef]
- Behere, A.; Rajaram, D.; Puranik, T.G.; Kirby, M.; Mavris, D.N. Reduced Order Modeling Methods for Aviation Noise Estimation. Sustainability 2021, 13, 1120. [Google Scholar] [CrossRef]
- Schäfer, M.; Strohmeier, M.; Lenders, V.; Martinovic, I.; Wilhelm, M. Bringing Up OpenSky: A Large-scale ADS-B Sensor Network for Research. In Proceedings of the 13th IEEE/ACM International Symposium on Information Processing in Sensor Networks (IPNS), Berlin, Germany, 15–17 April 2014; pp. 38–94. [Google Scholar]
- EUROCONTROL Experimental Center (EEC), Aircraft Noise and Performance Database. 2020. Available online: http://www.aircraftnoisemodel.org/ (accessed on 20 December 2021).
- Aviation Environmental Design Tool (AEDT) Version 3c Technical Manual. 2020. Available online: https://rosap.ntl.bts.gov/view/dot/49820/dot_49820_DS1.pdf? (accessed on 20 December 2021).
- Gabrielian, A.B.; Puranik, T.G.; Bendarkar, M.V.; Kirby, M.; Mavris, D.; Monteiro, D. Noise Model Validation Using Real World Operations Data. In AIAA Aviation 2021 Forum: Virtual, 2–6 August 2021; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Alligier, R.; Gianazza, D.; Durand, N. Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights. Transp. Res. Part Emerg. Technol. 2013, 36, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Blom, H.; Ellerbroek, J.; Hoekstra, J. Aircraft Mass and Thrust Estimation Using Recursive Bayesian Method. In Proceedings of the 8th International Conference on Research in Air Transportation, Barcelona, Spain, 26–29 June 2018. [Google Scholar]
- Corrado, S.J.; Puranik, T.G.; Pinon, O.J.; Mavris, D.N. Trajectory Clustering within the Terminal Airspace Utilizing a Weighted Distance Function. Proceedings 2020, 59, 7. [Google Scholar] [CrossRef]
Profile Name | Thrust Cutback | Initial Accel | Final Accel | Stage Length | Reduced Thrust (RT) Level |
---|---|---|---|---|---|
NADP 1-1 | 800 ft | 1500 ft | 3000 ft | 1 (0–500 nmi) | RT0 (100% Takeoff, 100% Climb) |
2 (500–1000 nmi) | RT5 (95% Takeoff, 100% Climb) | ||||
NADP 2-11 | 1000 ft | 1000 ft | 3000 ft | 3 (1000–1500 nmi) | RT10 (90% Takeoff, 90% Climb) |
4 (1500–2500 nmi) | RT15 (85% Takeoff, 90% Climb) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhanpato, J.; Puranik, T.G.; Mavris, D.N. Data-Driven Analysis of Departure Procedures for Aviation Noise Mitigation. Eng. Proc. 2021, 13, 2. https://doi.org/10.3390/engproc2021013002
Bhanpato J, Puranik TG, Mavris DN. Data-Driven Analysis of Departure Procedures for Aviation Noise Mitigation. Engineering Proceedings. 2021; 13(1):2. https://doi.org/10.3390/engproc2021013002
Chicago/Turabian StyleBhanpato, Jirat, Tejas G. Puranik, and Dimitri N. Mavris. 2021. "Data-Driven Analysis of Departure Procedures for Aviation Noise Mitigation" Engineering Proceedings 13, no. 1: 2. https://doi.org/10.3390/engproc2021013002