Design of On-Grid Photovoltaic System Considering Optimized Sizing of Photovoltaic Modules for Enhancing Output Energy †
Abstract
:1. Introduction
2. Materials and Methods
- Location 1: Energy generation by PV system installed at the GC University Faisalaba
- Location 2: Energy generation by PV system installed at the University of Agriculture Faisalabad
2.1. Photovoltaic Modules
2.2. PV Inverter
3. Results
3.1. Energy Generation by PV System Installed at GC University Faisalabad
3.2. Energy Generation by PV System Installed at University of Agriculture Faisalabad
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Tian, J.; Chen, L. Managing energy infrastructure to decarbonize industrial parks in China. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Armaroli, N.; Balzani, V. Towards an electricity-powered world. Energy Environ. Sci. 2011, 4, 3193–3222. [Google Scholar] [CrossRef]
- Tamoor, M.; Abu Bakar Tahir, M.; Zaka, M.A.; Iqtidar, E. Photovoltaic distributed generation integrated electrical distribution system for development of sustainable energy using reliability assessment indices and levelized cost of electricity. Environ. Prog. Sustain. Energy 2022, e13815. [Google Scholar] [CrossRef]
- Yang, Y.; Campana, P.E.; Yan, J. Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities. Renew. Sustain. Energy Rev. 2020, 131, 109967. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Y.; Li, Y.; Zhao, N.; Lv, Z. Research on Grid Parity Predictions of Centralized Photovoltaic Electricity. Emerg. Mark. Financ. Trade 2021, 57, 786–797. [Google Scholar] [CrossRef]
- Martín-Martínez, S.; Cañas-Carretón, M.; Honrubia-Escribano, A.; Gómez-Lázaro, E.J.E.C. Performance evaluation of large solar photovoltaic power plants in Spain. Energy Convers. Manag. 2019, 183, 515–528. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, Y. The economic performance of industrial and commercial rooftop photovoltaic in China. Energy 2019, 187, 115961. [Google Scholar]
- Fina, B.; Fleischhacker, A.; Auer, H.; Lettner, G. Economic assessment and business models of rooftop photovoltaic systems in multiapartment buildings: Case studies for Austria and Germany. J. Renew. Energy 2018, 2018, 9759680. [Google Scholar] [CrossRef]
- Liu, J.; Xu, F.; Lin, S. Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: A case study in Northwest China. J. Clean. Prod. 2017, 148, 386–397. [Google Scholar] [CrossRef]
- Ayompe, L.M.; Duffy, A.; McCormack, S.J.; Conlon, M. Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 2011, 52, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Salam, R.A.; Amber, K.P.; Ratyal, N.I.; Alam, M.; Akram, N.; Muñoz, C.Q.G.; Márquez, F.P.G. An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector. Energies 2020, 13, 5776. [Google Scholar] [CrossRef]
- Tamoor, M.; Tahir, M.S.; Sagir, M.; Tahir, M.B.; Iqbal, S.; Nawaz, T. Design of 3 kW integrated power generation system from solar and biogas. Int. J. Hydrogen Energy 2020, 45, 12711–12720. [Google Scholar] [CrossRef]
- Kumar, B.S.; Sudhakar, K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Rep. 2015, 1, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Quiles, E.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C. Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability. Sustainability 2020, 12, 1274. [Google Scholar] [CrossRef] [Green Version]
- Tamoor, M.; Bhatti, A.R.; Farhan, M.; Miran, S.; Raza, F.; Zaka, M.A. Designing of a Hybrid Photovoltaic Structure for an Energy-Efficient Street Lightning System Using PVsyst Software. Eng. Proc. 2021, 12, 45. [Google Scholar] [CrossRef]
- Tamoor, M.; Habib, S.; Bhatti, A.R.; Butt, A.D.; Awan, A.B.; Ahmed, E.M. Designing and Energy Estimation of Photovoltaic Energy Generation System and Prediction of Plant Performance with the Variation of Tilt Angle and Interrow Spacing. Sustainability 2022, 14, 627. [Google Scholar] [CrossRef]
Rated Maximum Power | 340 | 380 | 450 | 540 |
---|---|---|---|---|
VMP | 38.200 V | 40.300 V | 41.000 V | 31.200 V |
VOC | 46.200 V | 48.800 V | 49.600 V | 37.500 V |
IMP | 8.900 A | 9.430 A | 10.980 A | 17.330 A |
ISC | 9.500 A | 9.940 A | 11.530 A | 18.410 A |
Parameters | Value |
---|---|
Manufacturer | Ginlong Technologies (Solis-50 K) |
Maximum Power | 50.0 kW |
Minimum Power | 250.0 W |
Maximum Voltage | 1100 V |
Maximum MPPT Voltage | 1000 V |
Minimum MPPT Voltage | 200 V |
Minimum Voltage | 200 V |
AC Output | 380 Y/220 V |
PV Rating | Installed PV Capacity | Annual Energy Generation | Performance Ratio | kWh/kWp |
---|---|---|---|---|
340 | 294.4 kW | 440.4 MWh | 81.2% | 1495.8 |
380 | 329.1 kW | 492.0 MWh | 81.2% | 1495.2 |
450 | 360.9 kW | 541.7 MWh | 81.5% | 1500.9 |
540 | 383.4 kW | 576.7 MWh | 81.7% | 1504.2 |
PV Rating | Installed PV Capacity | Annual Energy Generation | Performance Ratio | kWh/kWp |
---|---|---|---|---|
340 | 658.2 kW | 944.5 MWh | 78.1% | 1434.9 |
380 | 735.7 kW | 1.056 GWh | 78.1% | 1435.6 |
450 | 782.1 kW | 1.125 GWh | 78.3% | 1438.0 |
540 | 789.5 kW | 1.131 GWh | 78.0% | 1433.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamoor, M.; Bhatti, A.R.; Farhan, M.; Miran, S. Design of On-Grid Photovoltaic System Considering Optimized Sizing of Photovoltaic Modules for Enhancing Output Energy. Eng. Proc. 2022, 19, 2. https://doi.org/10.3390/ECP2022-12671
Tamoor M, Bhatti AR, Farhan M, Miran S. Design of On-Grid Photovoltaic System Considering Optimized Sizing of Photovoltaic Modules for Enhancing Output Energy. Engineering Proceedings. 2022; 19(1):2. https://doi.org/10.3390/ECP2022-12671
Chicago/Turabian StyleTamoor, Muhammad, Abdul Rauf Bhatti, Muhammad Farhan, and Sajjad Miran. 2022. "Design of On-Grid Photovoltaic System Considering Optimized Sizing of Photovoltaic Modules for Enhancing Output Energy" Engineering Proceedings 19, no. 1: 2. https://doi.org/10.3390/ECP2022-12671
APA StyleTamoor, M., Bhatti, A. R., Farhan, M., & Miran, S. (2022). Design of On-Grid Photovoltaic System Considering Optimized Sizing of Photovoltaic Modules for Enhancing Output Energy. Engineering Proceedings, 19(1), 2. https://doi.org/10.3390/ECP2022-12671