A Proximal Algorithm for Fork-Choice in Distributed Ledger Technology for Context-Based Clustering on Edge Computing †
Abstract
:1. Introduction
2. Related Work
2.1. Context-Based Proximity for Scalability
2.2. Fog/Edge Computing for DLT Integrating with the IoT
3. Background and Motivation
4. Methods
4.1. System Model of the Proximity Consensus Algorithm
Context Proximity Spatial Distributions
4.2. Consensus by Sharing within Clustering
4.2.1. Context-Based Clustering
4.2.2. Ranking and Cluster Head or Leader Election
4.2.3. Program Synthesis
5. Results and Performance Evaluation
5.1. K-Medoids Clustering
5.2. Inductive Program Synthesis (IPS) and Cluster Head or Leader Election
6. Conclusions
References
- Consocenti, M.; Vetro, A.; De Martin, J.C. Blockchain for the Internet of Things: A Systematic Litteratur review. In Proceedings of the IEEE/ACS 13th International Conference on Computer Systems and Applications, Agadir, Morocco, 29 November–2 December 2016. [Google Scholar]
- Kim, S.; Kwon, Y.; Cho, S. A Survey of Scalability Solutions on Blockchain. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea South, 17–19 October 2018; pp. 1204–1207. [Google Scholar]
- Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Prentice Hall: Upper Saddle River, NJ, USA, 1989. [Google Scholar]
- Dorri, A.; Steger, M.; Kanhere, S.S.; Jurdak, R. BlockChain: A Distributed Solution to Automotive Security and Privacy. IEEE Commun. Mag. 2017, 55, 119–125. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Cheng, L.; Qiu, S.; Wang, W.; Zhang, X.; Zhang, Z. CreditCoin: A Privacy-Preserving Blockchain-Based Incentive Announcement Network for Communications of Smart Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2204–2220. [Google Scholar] [CrossRef]
- Huang, X.; Xu, C.; Wang, P.; Liu, H. LNSC: A security model for electric vehicle and charging pile management based on blockchain ecosystem. IEEE Access 2018, 6, 13565–13574. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE Trans. Ind. Informa. 2017, 14, 3690–3700. [Google Scholar] [CrossRef]
- Esposito, C.; de Santis, A.; Tortora, G.; Chang, H.; Choo, K.-K.R. Blockchain: A Panacea for Healthcare Cloud-Based Data Security and Privacy? IEEE Cloud Comput. 2018, 5, 31–37. [Google Scholar] [CrossRef]
- Guo, R.; Shi, H.; Zhao, Q.; Zheng, D. Secure Attribute-Based Signature Scheme with Multiple Authorities for Blockchain in Electronic Health Records Systems. IEEE Access 2018, 6, 11676–11686. [Google Scholar] [CrossRef]
- Gao, J.; Asamoah, K.O.; Sifah, E.B.; Smahi, A.; Xia, Q.; Xia, H.; Zhang, X.; Dong, G. GridMonitoring: Secured sovereign blockchain based monitoring on smart grid. IEEE Access 2018, 6, 9917–9925. [Google Scholar] [CrossRef]
- Liang, G.; Weller, S.R.; Luo, F.; Zhao, J.; Dong, Z.Y. Distributed Blockchain-Based Data Protection Framework for Modern Power Systems against Cyber Attacks. IEEE Trans. Smart Grid 2018, 10, 3162–3173. [Google Scholar] [CrossRef]
- Tian, F. An agri-food supply chain traceability system for China based on RFID & blockchain technology. In Proceedings of the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016. [Google Scholar]
- Sharma, P.K.; Singh, S.; Jeong, Y.-S.; Park, J.H. DistBlockNet: A Distributed Blockchains-Based Secure SDN Architecture for IoT Networks. IEEE Commun. Mag. 2017, 55, 78–85. [Google Scholar] [CrossRef]
- Sharding FAQs. Available online: https://github.com/ethereum/wiki/wiki/Sharding-FAQs (accessed on 10 October 2020).
- IOTA. Available online: https://www.iota.org/ (accessed on 10 October 2020).
- Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-Less Medical Data Sharing Among Cloud Service Providers via Blockchain. IEEE Access 2017, 5, 14757–14767. [Google Scholar] [CrossRef]
- Sharma, P.K.; Chen, M.-Y.; Park, J.H. A Software Defined Fog Node Based Distributed Blockchain Cloud Architecture for IoT. IEEE Access 2018, 6, 115–124. [Google Scholar] [CrossRef]
- Parker, J.; Chitchyan, R.; Angelopoulou, A.; Murkin, J. A block-free distributed ledger for p2p2 energy trading: Case with iota? In International Conference on Advanced Information Systems Engineering; Springer: Cham, Switzerland, 2019; pp. 111–125. 2p. [Google Scholar]
- Rahmani, R.; Rahman, H.; Kanter, T. Context-Based Logical Clustering of Flow-Sensors Exploiting HyperFlow and Hierarchical DHTs. In Proceedings of the 4th International Conference on Next Generation Information Technology, Noida, India, 26–27 September 2013. [Google Scholar]
- Rahman, H.; Rahmani, R.; Kanter, T. Multi-modal context-aware reasoNer (CAN) at the edge of IoT. Procedia Comput. Sci. 2017, 109, 335–342. [Google Scholar] [CrossRef]
- Balog, M.; Gaunt, A.L.; Brockschmidt, M. DeepCoder: Learning to Write Programs. Machine Learn. 2017, arXiv:1611.01989. [Google Scholar]
- Deep-coder. Available online: https://github.com/HiroakiMikami/deep-coder (accessed on 5 September 2020).
- Pyclustering library. Available online: https://github.com/annoviko/pyclustering (accessed on 6 September 2020).
- Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding; Stanford InfoLab: Stanford, CA, USA, 2007. [Google Scholar]
- Scikit-Learn Module. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html#sklearn-metrics-silhouette-score (accessed on 6 September 2020).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Vanderplas, J. Scikit-learn: Machine learning in Python. J. Machine Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Parsons, L.; Haque, E.; Liu, H. Subspace clustering for high dimensional data: A review. Acm Sigkdd Explorations Newsletter 2004, 6, 90–105. [Google Scholar] [CrossRef]
- Cachin, C.; Guerraoui, R.; Rodrigues, L. Introduction to Reliable and Secure Distributed Programming, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Pythone DeepCoder. Available online: https://github.com/dkamm/deepcoder (accessed on 5 September 2020).
- Keras. Available online: https://keras.io/ (accessed on 5 September 2020).
- Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 5 September 2020).
- Numpy. Available online: https://numpy.org/ (accessed on 5 September 2020).
- Pandas. Available online: https://pandas.pydata.org/ (accessed on 10 September 2020).
- Python Random Function. Available online: https://docs.python.org/3/library/random.html#random.uniform (accessed on 10 September 2020).
- Python 3 Built-in Function time.perf_counter. Available online: https://docs.python.org/3/library/time.html#time.perf_counter (accessed on 10 September 2020).
- Wall Time with the Function time.time. Available online: https://docs.python.org/3/library/time.html#time.time (accessed on 10 September 2020).
Labels | Synthesized Program | Program Consistent | Steps Used |
---|---|---|---|
DFS | LIST|MAXIMUM,0 | Yes | 5 |
Sort and add | LIST|MAXIMUM,0 | Yes | [2,3,4,5] |
Labels | DFS Run Time | DFS Wall Time | Sort and Add Run Time | Sort and Add Wall Time |
---|---|---|---|---|
Minimum | 0.874 ms | 0.0 ms | 1.263 ms | 0.997 ms |
Maximum | 0.964 ms | 0.997 ms | 1.442 ms | 1.995 ms |
Mean | 0.888 ms | 0.764 ms | 1.315 ms | 1.462 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, R.; Firouzi, R.; Alam, M. A Proximal Algorithm for Fork-Choice in Distributed Ledger Technology for Context-Based Clustering on Edge Computing. Eng. Proc. 2020, 2, 92. https://doi.org/10.3390/ecsa-7-08261
Rahmani R, Firouzi R, Alam M. A Proximal Algorithm for Fork-Choice in Distributed Ledger Technology for Context-Based Clustering on Edge Computing. Engineering Proceedings. 2020; 2(1):92. https://doi.org/10.3390/ecsa-7-08261
Chicago/Turabian StyleRahmani, Rahim, Ramin Firouzi, and Mahbub Alam. 2020. "A Proximal Algorithm for Fork-Choice in Distributed Ledger Technology for Context-Based Clustering on Edge Computing" Engineering Proceedings 2, no. 1: 92. https://doi.org/10.3390/ecsa-7-08261
APA StyleRahmani, R., Firouzi, R., & Alam, M. (2020). A Proximal Algorithm for Fork-Choice in Distributed Ledger Technology for Context-Based Clustering on Edge Computing. Engineering Proceedings, 2(1), 92. https://doi.org/10.3390/ecsa-7-08261