Optimal Planning of a Photovoltaic-Based Grid-Connected Electric Vehicle Charging System Using Teaching–Learning-Based Optimization (TLBO) †
Abstract
:1. Introduction
2. Methodology
2.1. Operating Modes
2.1.1. First Operational Mode (PV 2 EV)
2.1.2. Second Operational Mode (ESU 2 EV)
2.1.3. Third Operational Mode (GRID 2 EV)
2.1.4. Fourth Operational Mode (PV 2 ESU)
2.1.5. Fifth Operational Mode (PV 2 GRID)
2.1.6. Sixth Operational Mode (GRID 2 ESU)
2.2. Proposed Energy Management Schedule
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajforoosh, S.; Masoum, M.A.; Islam, S.M. Online optimal variable charge-rate coordination of plug-in electric vehicles to maximize customer satisfaction and improve grid performance. Electr. Power Syst. Res. 2016, 141, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Sbordone, D.; Bertini, I.; di Pietra, B.; Falvo, M.C.; Genovese, A.; Martirano, L. EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electr. Power Syst. Res. 2015, 120, 96–108. [Google Scholar] [CrossRef]
- Hossain, M. Solar energy integration into advanced building design for meeting energy demand and environment problem. Int. J. Energy Res. 2016, 40, 1293–1300. [Google Scholar] [CrossRef]
- Winfield, M.; Shokrzadeh, S.; Jones, A. Energy policy regime change and advanced energy storage: A comparative analysis. Energy Policy 2018, 115, 572–583. [Google Scholar] [CrossRef]
- Fattori, F.; Anglani, N.; Muliere, G. Combining photovoltaic energy with electric vehicles, smart charging and vehicle-to-grid. Sol. Energy 2014, 110, 438–451. [Google Scholar] [CrossRef]
- Bhatti, A.R.; Salam, Z. A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system. Renew Energy 2018, 125, 384–400. [Google Scholar] [CrossRef]
- Liu, N.; Zou, F.; Wang, L.; Wang, C.; Chen, Z.; Chen, Q. Online energy management of PV-assisted charging station under time-of-use pricing. Electr. Power Syst. Res. 2016, 137, 76–85. [Google Scholar] [CrossRef]
- Stark, C.; Pless, J.; Logan, J.; Zhou, E.; Douglas, J.A. Renewable Electricity: Insights for the Coming Decade; Joint Institute for Strategic Energy Analysis: Golden, CO, USA, 2015. [Google Scholar]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef] [Green Version]
- Stuart, S.A.; Simon, H. Redflow Investor Presentation; Redflow Australia: Brisbane, Australia, 2015. [Google Scholar]
- Parrado, C.; Girard, A.; Simon, F.; Fuentealba, E. 2050 LCOE (levelized cost of energy) projection for a hybrid PV (photovoltaic)- CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy 2016, 94, 422–430. [Google Scholar] [CrossRef]
- Köberle, A.C.; Gernaat, D.E.; van Vuuren, D.P. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy 2015, 89, 739–756. [Google Scholar] [CrossRef] [Green Version]
- Goli, P.; Shireen, W. PV powered smart charging station for PHEVs. Renew. Energy 2014, 66, 280–287. [Google Scholar] [CrossRef]
- Yang, C.-J. Reconsidering solar grid parity. Energy Policy 2010, 38, 3270–3273. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, L.; Ouyang, M.; Wang, H.; Lu, L.; Li, J.; Li, Z. Optimal decentralized valley filling charging strategy for electric vehicles. Energy Convers. Manag. 2014, 78, 537–550. [Google Scholar] [CrossRef]
- Ma, T.; Mohammed, O.A. Optimal charging of plug-in electric vehicles for a car-park infrastructure. IEEE Trans. Ind. Appl. 2014, 50, 2323–2330. [Google Scholar] [CrossRef]
- Zhang, L. Optimal Power Management of Parking-Lot Electric Vehicle Charging; The University of Texas: Dallas, TX, USA, 2014. [Google Scholar]
- Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- García-Triviño, P.; Torreglosa, J.P.; Fernández-Ramírez, L.M.; Jurado, F. Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system. Energy 2016, 115, 38–48. [Google Scholar] [CrossRef]
- Locment, F.; Sechilariu, M. Modeling and simulation of DC microgrids for electric vehicle charging stations. Energies 2015, 8, 4335–4356. [Google Scholar] [CrossRef]
- Bhatti, A.R.; Salam, Z.; Sultana, B.; Rasheed, N.; Awan, A.B.; Sultana, U.; Younas, M. Optimized sizing of photovoltaic grid-connected electric vehicle charging system using particle swarm optimization. Int. J. Energy Res. 2019, 43, 500–522. [Google Scholar] [CrossRef]
- Battiti, R.; Brunato, M.; Mascia, F. Reactive Search and Intelligent Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 45. [Google Scholar]
- Kelley, T.R. Optimization, an important stage of engineering design. Technol. Teach. 2005, 69, 18–23. [Google Scholar]
- Muratori, M.; Moran, M.J.; Serra, E.; Rizzoni, G. Highly-resolved modeling of personal transportation energy consumption in the United States. Energy 2013, 58, 168–177. [Google Scholar] [CrossRef]
Parameters | TLBO |
---|---|
Number of Iterations | 100 |
Optimum Number of PV Panels | 100 |
Optimum Number of ESUs | 12 |
Daily Profit | USD 9 |
Annual Profit | USD 3286 |
Percentage Reduction in Grid Burden | 52% |
Annual Reduction in Carbon Footprints | 42 lbs./annum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, U.; Umer, M.; Shamoon, M.; Hasan, M. Optimal Planning of a Photovoltaic-Based Grid-Connected Electric Vehicle Charging System Using Teaching–Learning-Based Optimization (TLBO). Eng. Proc. 2022, 20, 28. https://doi.org/10.3390/engproc2022020028
Sultana U, Umer M, Shamoon M, Hasan M. Optimal Planning of a Photovoltaic-Based Grid-Connected Electric Vehicle Charging System Using Teaching–Learning-Based Optimization (TLBO). Engineering Proceedings. 2022; 20(1):28. https://doi.org/10.3390/engproc2022020028
Chicago/Turabian StyleSultana, Umbrin, Muhammad Umer, Muhammad Shamoon, and Muhammad Hasan. 2022. "Optimal Planning of a Photovoltaic-Based Grid-Connected Electric Vehicle Charging System Using Teaching–Learning-Based Optimization (TLBO)" Engineering Proceedings 20, no. 1: 28. https://doi.org/10.3390/engproc2022020028
APA StyleSultana, U., Umer, M., Shamoon, M., & Hasan, M. (2022). Optimal Planning of a Photovoltaic-Based Grid-Connected Electric Vehicle Charging System Using Teaching–Learning-Based Optimization (TLBO). Engineering Proceedings, 20(1), 28. https://doi.org/10.3390/engproc2022020028