MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition †
Abstract
:Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Sun, X.; Wang, Z.; Ghuman, P.; Cheng, I. MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition. Eng. Proc. 2022, 21, 26. https://doi.org/10.3390/engproc2022021026
Islam MS, Sun X, Wang Z, Ghuman P, Cheng I. MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition. Engineering Proceedings. 2022; 21(1):26. https://doi.org/10.3390/engproc2022021026
Chicago/Turabian StyleIslam, MD Samiul, Xinyao Sun, Zheng Wang, Parwant Ghuman, and Irene Cheng. 2022. "MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition" Engineering Proceedings 21, no. 1: 26. https://doi.org/10.3390/engproc2022021026
APA StyleIslam, M. S., Sun, X., Wang, Z., Ghuman, P., & Cheng, I. (2022). MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition. Engineering Proceedings, 21(1), 26. https://doi.org/10.3390/engproc2022021026