Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.3. AFM Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Chu, X.; Liu, L.; Huang, Y.; Guiver, M.D.; Li, N. Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: Synthesis and durability. J. Membr. Sci. 2019, 578, 239–250. [Google Scholar] [CrossRef]
- Mandal, M.; Huang, G.; Kohl, P.A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells. J. Membr. Sci. 2019, 570–571, 394–402. [Google Scholar] [CrossRef]
- Noh, S.; Jeon, J.Y.; Adhikari, S.; Kim, Y.S.; Bae, C. Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology. Accounts Chem. Res. 2019, 52, 2745–2755. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.; Peters, L.M.; Mucalo, M.R. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol. 2020, 169, 85–94. [Google Scholar] [CrossRef]
- Chen, B.; Yu, S.; Zhao, X. The influence of membrane surface properties on the radionuclide mass transfer process in reverse osmosis. Sep. Purif. Technol. 2020, 252, 117455. [Google Scholar] [CrossRef]
- Lee, C.-W.; Jang, L.-L.; Pan, H.-J.; Chen, Y.-R.; Chen, C.-C.; Lee, C.-H. Membrane roughness as a sensitive parameter reflecting the status of neuronal cells in response to chemical and nanoparticle treatments. J. Nanobiotechnol. 2016, 14, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, W.; Cho, G.Y.; Cha, S.W.; Park, T. Surface Roughening of Electrolyte Membrane for Pt- and Ru-Sputtered Passive Direct Methanol Fuel Cells. Materials 2019, 12, 3969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodyer, C.; Bunge, A. Mass transfer through membranes with surface roughness. J. Membr. Sci. 2012, 409–410, 127–136. [Google Scholar] [CrossRef]
- Kaker, B.; Hribernik, S.; Mohan, T.; Kargl, R.; Kleinschek, K.S.; Pavlica, E.; Kreta, A.; Bratina, G.; Lue, S.J.; Božič, M. Novel Chitosan–Mg(OH)2-Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 19356–19368. [Google Scholar] [CrossRef] [Green Version]
- Kreta, A.; Gaberšček, M.; Muševič, I. Time-resolved in situ electrochemical atomic force microscopy imaging of the corrosion dynamics of AA2024-T3 using a new design of cell. J. Mater. Res. 2020, 36, 79–93. [Google Scholar] [CrossRef]
- Mihelčič, M.; Surca, A.K.; Kreta, A.; Gaberšček, M. Spectroscopical and Electrochemical Characterisation of a (3-Mercaptopropyl)trimethoxysilane-Based Protective Coating on Aluminium Alloy 2024. Croat. Chem. Acta 2017, 90, K1. [Google Scholar] [CrossRef]
- Rodošek, M.; Kreta, A.; Gaberšček, M.; Vuk, A. Ex situ IR reflection–absorption and in situ AFM electrochemical characterisation of the 1,2-bis(trimethoxysilyl)ethane-based protective coating on AA 2024 alloy. Corros. Sci. 2016, 102, 186–199. [Google Scholar] [CrossRef]
- Surca, A.K.; Rodošek, M.; Kreta, A.; Mihelčič, M.; Gaberšček, M. In Situ and Ex Situ Electrochemical Measurements: Spectroelectrochemistry and Atomic Force Microscopy. In Hybrid Organic-Inorganic Interfaces; Delville, M.-H., Taubert, A., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2017; pp. 793–837. [Google Scholar] [CrossRef]
- Kreta, A.; Rodošek, M.; Perše, L.S.; Orel, B.; Gaberšček, M.; Vuk, A. In situ electrochemical AFM, ex situ IR reflection–absorption and confocal Raman studies of corrosion processes of AA 2024-T3. Corros. Sci. 2016, 104, 290–309. [Google Scholar] [CrossRef]
Sample | Layers | Average Height (nm) | Roughness (nm) |
---|---|---|---|
CS (reference) | Single layer | 70 ± 7 | 19 ± 3 |
CS +GO | Single layer | 56 ± 1 | 17 ± 0.2 |
CS +GO | Layer by layer (3 layers) | 40 ± 15 | 10 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreta, A.; Pavlica, E.; Božič, M.; Bratina, G. Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application. Eng. Proc. 2023, 31, 26. https://doi.org/10.3390/ASEC2022-13819
Kreta A, Pavlica E, Božič M, Bratina G. Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application. Engineering Proceedings. 2023; 31(1):26. https://doi.org/10.3390/ASEC2022-13819
Chicago/Turabian StyleKreta, Ahmed, Egon Pavlica, Mojca Božič, and Gvido Bratina. 2023. "Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application" Engineering Proceedings 31, no. 1: 26. https://doi.org/10.3390/ASEC2022-13819
APA StyleKreta, A., Pavlica, E., Božič, M., & Bratina, G. (2023). Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application. Engineering Proceedings, 31(1), 26. https://doi.org/10.3390/ASEC2022-13819