Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review †
Abstract
:1. Introduction
2. Applications of Semantic Segmentation
2.1. Semantic Segmentation in Medical Imaging
2.2. Semantic Segmentation in Face Recognition
2.3. Semantic Segmentation in Lane Detection
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Jia, F.; Hu, Q. Automatic Segmentation of Liver Tumor in CT Images with Deep Convolutional Neural Networks. J. Comput. Commun. 2015, 3, 146–151. [Google Scholar] [CrossRef]
- Vivanti, R.; Ephrat, A.; Joskowicz, L.; Karaaslan, O.A.; Lev-Cohain, N.; Sosna, J. Automatic Liver Tumor Segmentation in Follow-up CT Studies Using Convolutional Neural Networks. Available online: https://www.researchgate.net/profile/Leo-Joskowicz/publication/314063607_Automatic_Liver_Tumor_Segmentation_in_Follow-Up_CT_Scans_Preliminary_Method_and_Results/links/58f84cfd0f7e9bfcf93c1292/Automatic-Liver-Tumor-Segmentation-in-Follow-Up-CT-Scans-Preliminary-Method-and-Results.pdf (accessed on 25 January 2023).
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef]
- Cherukuri, V.; Ssenyonga, P.; Warf, B.C.; Kulkarni, A.V.; Monga, V.; Schiff, S.J. Learning Based Segmentation of CT Brain Images: Application to Postoperative Hydrocephalic Scans. IEEE Trans. Biomed. Eng. 2017, 65, 1871–1884. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Liu, J.; Xu, Y.; Yin, F.; Wong, D.W.K.; Tan, N.-M.; Tao, D.; Cheng, C.-Y.; Aung, T.; Wong, T.Y. Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening. IEEE Trans. Med. Imaging 2013, 32, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Song, T.-H.; Sanchez, V.; Eidaly, H.; Rajpoot, N.M. Dual-Channel Active Contour Model for Megakaryocytic Cell Segmentation in Bone Marrow Trephine Histology Images. IEEE Trans. Biomed. Eng. 2017, 64, 2913–2923. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Liu, Z.; Liu, Z.; Gu, D.; Zang, Y.; Dong, D.; Gevaert, O.; Tian, J. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Med. Image Anal. 2017, 40, 172–183. [Google Scholar] [CrossRef]
- Onishi, Y.; Teramoto, A.; Tsujimoto, M.; Tsukamoto, T.; Saito, K.; Toyama, H.; Imaizumi, K.; Fujita, H. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int. J. Comput. Assist. Radiol. Surg. 2019, 15, 173–178. [Google Scholar] [CrossRef]
- Chen, C.; Qin, C.; Qiu, H.; Tarroni, G.; Duan, J.; Bai, W.; Rueckert, D. Deep Learning for Cardiac Image Segmentation: A Review. Front. Cardiovasc. Med. 2020, 7, 25. [Google Scholar] [CrossRef]
- Wu, F.; Zhuang, X. CF Distance: A New Domain Discrepancy Metric and Application to Explicit Domain Adaptation for Cross-Modality Cardiac Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 4274–4285. [Google Scholar] [CrossRef]
- Chen, L.; Bentley, P.; Mori, K.; Misawa, K.; Fujiwara, M.; Rueckert, D. DRINet for Medical Image Segmentation. IEEE Trans. Med. Imaging 2018, 37, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Nie, D.; Adeli, E.; Yin, J.; Lian, J.; Shen, D. High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation. IEEE Trans. Image Process. 2019, 29, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Mehrtash, A.; Wells, W.M.; Tempany, C.M.; Abolmaesumi, P.; Kapur, T. Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 3868–3878. [Google Scholar] [CrossRef] [PubMed]
- Anthimopoulos, M.M.; Christodoulidis, S.; Ebner, L.; Geiser, T.; Christe, A.; Mougiakakou, S.G. Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks. IEEE J. Biomed. Health Inform. 2018, 23, 714–722. [Google Scholar] [CrossRef]
- Ren, X.; Ahmad, S.; Zhang, L.; Xiang, L.; Nie, D.; Yang, F.; Wang, Q.; Shen, D. Task Decomposition and Synchronization for Semantic Biomedical Image Segmentation. IEEE Trans. Image Process. 2020, 29, 7497–7510. [Google Scholar] [CrossRef]
- Weng, W.; Zhu, X. INet: Convolutional Networks for Biomedical Image Segmentation. IEEE Access 2021, 9, 16591–16603. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Srivastava, A.; Jha, D.; Chanda, S.; Pal, U.; Johansen, H.; Johansen, D.; Riegler, M.; Ali, S.; Halvorsen, P. MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation. IEEE J. Biomed. Health Inform. 2021, 26, 2252–2263. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Dong, M.; Yang, Y.; Zhou, P.; Huang, T.; Chen, Y. End-to-End Detection-Segmentation System for Face Labeling. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 5, 457–467. [Google Scholar] [CrossRef]
- Meenpal, T.; Balakrishnan, A.; Verma, A. Facial Mask Detection using Semantic Segmentation. In Proceedings of the 2019 4th International Conference on Computing, Communications and Security, ICCCS, Rome, Italy, 10–12 October 2019. [Google Scholar] [CrossRef]
- Kalayeh, M.M.; Shah, M. Improving Facial Attribute Prediction using Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Yousaf, N.; Hussein, S.; Sultani, W. Estimation of BMI from facial images using semantic segmentation based region-aware pooling. Comput. Biol. Med. 2021, 133, 104392. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Rew, J.; Hwang, E. FLSNet: Robust Facial Landmark Semantic Segmentation. IEEE Access 2020, 8, 116163–116175. [Google Scholar] [CrossRef]
- Lu, P.; Cui, C.; Xu, S.; Peng, H.; Wang, F. SUPER: A Novel Lane Detection System. IEEE Trans. Intell. Veh. 2021, 6, 583–593. [Google Scholar] [CrossRef]
- Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as Deep: Spatial CNN for Traffic Scene Understanding. Proc. Conf. AAAI Artif. Intell. 2018, 32, 7276–7283. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Wang, Q. ABSSNet: Attention-Based Spatial Segmentation Network for Traffic Scene Understanding. IEEE Trans. Cybern. 2021, 52, 9352–9362. [Google Scholar] [CrossRef] [PubMed]
- Azimi, S.M.; Fischer, P.; Korner, M.; Reinartz, P. Aerial LaneNet: Lane-Marking Semantic Segmentation in Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2920–2938. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, J.; Sun, S. MFIALane: Multiscale Feature Information Aggregator Network for Lane Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24263–24275. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B. G-NET: Accurate Lane Detection Model for Autonomous Vehicle. IEEE Syst. J. 2022. early access. [Google Scholar] [CrossRef]
- Shao, M.-E.; Haq, M.A.; Gao, D.-Q.; Chondro, P.; Ruan, S.-J. Semantic Segmentation for Free Space and Lane Based on Grid-Based Interest Point Detection. IEEE Trans. Intell. Transp. Syst. 2021, 23, 8498–8512. [Google Scholar] [CrossRef]
- Cao, Z.; Xu, X.; Hu, B.; Zhou, M. Rapid Detection of Blind Roads and Crosswalks by Using a Lightweight Semantic Segmentation Network. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6188–6197. [Google Scholar] [CrossRef]
- Wang, Q.; Han, T.; Qin, Z.; Gao, J.; Li, X. Multitask Attention Network for Lane Detection and Fitting. IEEE Trans. Neural Networks Learn. Syst. 2020, 33, 1066–1078. [Google Scholar] [CrossRef]
- Chougule, S.; Ismail, A.; Soni, A.; Kozonek, N.; Narayan, V.; Schulze, M. An efficient encoder-decoder CNN architecture for reliable multilane detection in real time. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1444–1451. [Google Scholar] [CrossRef]
S. No. | Method/CNN | Backbone/Network Architecture | Problem Addressed | Performnace Metric | Applications |
---|---|---|---|---|---|
1 | UNET | DRI-Net | Distinctive features learned | Dice Coefficient, Sensitivity | Medical Imaging |
2 | Encoder–Decoder | HMEDN | Exploits comprehensive semantic information | Dice Ratio, Memory consumption | region of research is pelvic CT and brain Tumor |
3 | FCN | Predictive uncertainty estimation addressed | Dice Loss, Cross Entropy loss, uncertainty estimation | Medical Imaging | |
4 | FCN | FCN with Dilated filters | Sliding window model | Accuracy | Medical Imaging (Lungs) |
5 | FCN | Source image deomposition | Training complexities addressed | Loss Function, Dice, IoU | Medical Imaging |
6 | Encoder–Decoder- Unet | INet and Dense INet compared with Dense Unet and ResDenseUNet | Feature fusion and feature concatination addressed. | Dice ratio, TPR, Specificity, TNR, HD95 | Biomedical (MRI, X-Ray, CT, Endoscopic image, Ultrasound) |
7 | UNet | Re-use of computation | Accuracy, Sensitivity, Specifici | Arterial Calcification in Mammograms | |
8 | CNN | MSRF-Net | efficiently segments objects | Dice Coefficient (DSC) | Skin lesion |
S. No. | Method/CNN | Backbone/Network Architecture | Problem addressed | Performance Metric |
---|---|---|---|---|
1 | (Pyramid FCN) | End-to-end face labelling | End-to-end manner | Fscore |
2 | FCN | Binary face classifier | mask generated from arbitrary size input image | Pixel accuracy |
3 | FCN | improvement in facial attribute prediction | Classification error, average precision | |
4 | FCN | Face Semantic segmentation | added generalization and features local information | P(Pearson correlation), MAE, RMS error |
5 | FCN | (Facial landmark Net) | improved imbalance pixels | Pixel accuracy, IoU |
6 | CNN | UNet | Supplemental bypass in the conventional optical character recognition (OCR) process | Recall, precision, F-measure |
7 | FCN | LCSegNet(Label coding Segmentation net) | recognition of large-scale Chinese characters | character recognition accuracy |
8 | Deep Learning | UNet | Improve quality of output, digitization | Jaccard index, TN, TP |
S. No. | Method/CNN | Backbone/Network architecture | Problem addressed | Performance Metric |
---|---|---|---|---|
1 | CNN | SUPER | Optimization of Lane parameters | TPR, FPR, Fmax |
2 | Encoder–Decoder (Spatial-SCNN) | ABSSNet | Spatial information inside the layers | MIoU |
3 | FCN (Encoder–Decoder) | Aerial LaneNet | Captures Large area in short span of time | Loss function, Dice Coefficient, Forward time |
4 | Encoder–Decoder | MFIA Lane | Simultaneous handling of multiple perceptual task | Accuracy, F1, PA, IoU |
5 | Encoder–Decoder | G-Net | Releases the detection burden | Accuracy, FP, FN, FPS |
6 | CNN | Network can learn the spatial relationship for point of interest | MIoU | |
7 | Encoder–Decoder | Light weight segmentation network | Reduce the number of parameters | Computation time per image |
8 | CNN | Accuracy of location | Correct rate | |
9 | CNN | Multilane encoder–decoder | accuracy of weak class objects | Speed and accuracy |
10 | CNN | Spatial-SCNN | Strong Spatial relationship | Accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazhar, M.; Fakhar, S.; Rehman, Y. Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review. Eng. Proc. 2023, 32, 21. https://doi.org/10.3390/engproc2023032021
Mazhar M, Fakhar S, Rehman Y. Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review. Engineering Proceedings. 2023; 32(1):21. https://doi.org/10.3390/engproc2023032021
Chicago/Turabian StyleMazhar, Madiha, Saba Fakhar, and Yawar Rehman. 2023. "Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review" Engineering Proceedings 32, no. 1: 21. https://doi.org/10.3390/engproc2023032021
APA StyleMazhar, M., Fakhar, S., & Rehman, Y. (2023). Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review. Engineering Proceedings, 32(1), 21. https://doi.org/10.3390/engproc2023032021