A Cell-Based Bioelectric Biosensor for Salmonella spp. Detection in Food †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples and Experimental Design
2.2. Bacteria Culturing and Sample Inoculation
2.3. Bioensor Development and Analysis of the Samples
2.4. Algorithm for Response Processing and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griffith, R.W.; Carlson, S.A.; Krull, A.C. Salmonellosis. In Diseases of Swine; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 912–925. [Google Scholar] [CrossRef]
- Sun, H.; Wan, Y.; Du, P.; Bai, L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog. Dis. 2020, 17, 87–97. Available online: https://home.liebertpub.com/fpd (accessed on 31 January 2023). [CrossRef] [PubMed]
- Okoro, C.K.; A Kingsley, R.; Connor, T.R.; Harris, S.R.; Parry, C.M.; Al-Mashhadani, M.N.; Kariuki, S.; Msefula, C.L.; A Gordon, M.; de Pinna, E.; et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat. Genet. 2012, 44, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Lemunier, M.; Francou, C.; Rousseaux, S.; Houot, S.; Dantigny, P.; Piveteau, P.; Guzzo, J. Long-Term Survival of Pathogenic and Sanitation Indicator Bacteria in Experimental Biowaste Composts. Appl. Environ. Microbiol. 2005, 71, 5779. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.F.; Tauxe, R.V. Salmonellosis: Nontyphoidal. In Bacterial Infections of Humans: Epidemiology and Control; Springer: Boston, MA, USA, 2009; pp. 677–698. [Google Scholar] [CrossRef]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Juniora, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef] [PubMed]
- Gharpure, R.; Healy, J.M.; Lauer, A.C.; Tauxe, R.V. Salmonella infections. In Foodborne Infections and Intoxications, 5th ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 65–88. [Google Scholar] [CrossRef]
- Silva, N.F.D.; Magalhães, J.M.C.S.; Freire, C.; Delerue-Matos, C. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. Biosens Bioelectron 2018, 99, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, T.; Loizou, K.; Hadjilouka, A.; Inglezakis, A.; Kintzios, S. Newly Developed System for Acetamiprid Residue Screening in the Lettuce Samples Based on a Bioelectric Cell Biosensor. Biosensors 2020, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Hadjilouka, A.; Loizou, K.; Apostolou, T.; Dougiakis, L.; Inglezakis, A.; Tsaltas, D. Newly Developed System for the Robust Detection of Listeria monocytogenes Based on a Bioelectric Cell Biosensor. Biosensors 2020, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/56712.html (accessed on 28 March 2023).
- Hadjilouka, A.; Loizou, K.; Apostolou, T.; Dougiakis, L.; Inglezakis, A.; Tsaltas, D. A Cell-Based Biosensor System for Listeria monocytogenes Detection in Food. Proceedings 2020, 60, 49. [Google Scholar] [CrossRef]
- Margot, H.; Zwietering, M.H.; Joosten, H.; O’Mahony, E.; Stephan, R. Evaluation of different buffered peptone water (BPW) based enrichment broths for detection of Gram-negative foodborne pathogens from various food matrices. Int. J. Food Microbiol. 2015, 214, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.Y.; Park, J.-H.; Chon, J.-W.; Wee, S.-H.; Moon, J.-S.; Kim, Y.-J.; Seo, K.-H. Evaluation of selective enrichment broths and chromogenic media for Salmonella detection in highly contaminated chicken carcasses. Poult. Sci. 2012, 91, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Schönenbrücher, V.; Mallinson, E.T.; Bülte, M. A comparison of standard cultural methods for the detection of foodborne Salmonella species including three new chromogenic plating media. Int. J. Food Microbiol. 2008, 123, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Glaize, A.; Young, M.; Harden, L.; Gutierrez-Rodriguez, E.; Thakur, S. The effect of vegetation barriers at reducing the transmission of Salmonella and Escherichia coli from animal operations to fresh produce. Int. J. Food Microbiol. 2021, 347, 109196. [Google Scholar] [CrossRef] [PubMed]
Phase | Protocol | Procedure | Total Incubation | |||||
---|---|---|---|---|---|---|---|---|
Broths/Incubation Time | ||||||||
Phase 1 | 1 | BPW | 24 h | → RVS | 24 h | 48 h | ||
2 | BPW | 24 h | → MKTTn | 24 h | 48 h | |||
3 | BPW | 24 h | → RVS | 6 h | → M broth | 24 h | 54 h | |
Phase 2 | 4 | BPW | 24 h | 24 h | ||||
5 | BPW | 6 h | → RVS | 24 h | 30 h | |||
6 | BPW | 6 h | → RVS | 18 h | 24 h | |||
7 | BPW | 6 h | → MKTTn | 18 h | 24 h |
Performance Indices | Phase 1 | Phase 2 | |||||
---|---|---|---|---|---|---|---|
Protocol 1 | Protocol 2 | Protocol 3 | Protocol 4 | Protocol 5 | Protocol 6 | Protocol 7 | |
RVS 48 h | MKTTn 48 h | M broth 54 h | BPW 24 h | RVS 30 h | MKTTn 24 h | RVS 24 h | |
Accuracy | 97.7% | 83.8% | 90% | 78.5% | 88.8% | 78% | 86.1% |
Se. | 100% | 66.6% | 100% | 50% | 89.6% | 84.7% | 85.7% |
Sp. | 97% | 88% | 87.5% | 87.5% | 87.5% | 60.7% | 86.3% |
PPV | 90.9% | 57.1% | 66.6% | 55.5% | 92.8% | 84.7% | 80% |
NPV | 100% | 91.6% | 100% | 34.8% | 82.3% | 60.7% | 90.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinou, L.; Varda, E.; Pempetsiou, S.; Apostolou, T.; Loizou, K.; Dougiakis, L.; Inglezakis, A.; Hadjilouka, A. A Cell-Based Bioelectric Biosensor for Salmonella spp. Detection in Food. Eng. Proc. 2023, 35, 4. https://doi.org/10.3390/IECB2023-14564
Konstantinou L, Varda E, Pempetsiou S, Apostolou T, Loizou K, Dougiakis L, Inglezakis A, Hadjilouka A. A Cell-Based Bioelectric Biosensor for Salmonella spp. Detection in Food. Engineering Proceedings. 2023; 35(1):4. https://doi.org/10.3390/IECB2023-14564
Chicago/Turabian StyleKonstantinou, Lazaros, Eleni Varda, Stella Pempetsiou, Theofylaktos Apostolou, Konstantinos Loizou, Lazaros Dougiakis, Antonios Inglezakis, and Agni Hadjilouka. 2023. "A Cell-Based Bioelectric Biosensor for Salmonella spp. Detection in Food" Engineering Proceedings 35, no. 1: 4. https://doi.org/10.3390/IECB2023-14564
APA StyleKonstantinou, L., Varda, E., Pempetsiou, S., Apostolou, T., Loizou, K., Dougiakis, L., Inglezakis, A., & Hadjilouka, A. (2023). A Cell-Based Bioelectric Biosensor for Salmonella spp. Detection in Food. Engineering Proceedings, 35(1), 4. https://doi.org/10.3390/IECB2023-14564