Biosynthesis and Characterization of Copper Oxide Nanoparticles †
Abstract
:1. Introduction
2. Experimental Detail
2.1. Synthesis of CuO Nanoparticles
2.2. Characterization
3. Results and Discussions
3.1. FTIR Analysis
3.2. RAMAN Analysis
3.3. XRD Analysis
3.4. SEM Analysis
3.5. EDX Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.A.; Shahid, S.; Sajid, M.R.; Noreen, F.; Kanwal, S. Biogenic synthesis of CuO nanoparticles and their biomedical applications: A current review. Int. J. Adv. Res. 2017, 5, 925–946. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, U.T.; Mohan Mantravadi, K.; Nageswara Rao, G.V.S. Strategies to synthesis copper oxide nanoparticles and their bio applications—A review. Mater. Sci. Technol. 2018, 34, 2214–2222. [Google Scholar] [CrossRef]
- Keabadile, O.P.; Aremu, A.O.; Elugoke, S.E.; Fayemi, O.E. Green and traditional synthesis copper oxide nanoparticles—Comparative study. Nanomaterials 2020, 10, 2502. [Google Scholar] [CrossRef] [PubMed]
- Matei, A.; Tucureanu, V.; Popescu, M.; Romanitan, C.; Bita, B.; Cernica, I. Synthesis and characterization of various surfactants for stabilized CuO powder. Mater. Res. Proc. 2018, 8, 52–60. [Google Scholar]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
- Negrescu, A.M.; Killian, M.S.; Raghu, S.N.V.; Schmuki, P.; Mazare, A.; Cimpean, A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J. Funct. Biomater. 2022, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomater. Res. 2020, 24, 11. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, H.; Qureshi, M.S.; Haque, F.Z. Biosynthesis of flower-shaped CuO nanostructures and their photocatalytic and antibacterial activities. Nano-Micro Lett. 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Attar, A.; Altikatoglu, M. Biomimetic synthesis, characterization and antibacterial efficacy of ZnO and Au nanoparticles using echinacea flower extract precursor. Mater. Res. Express 2018, 5, 055403. [Google Scholar] [CrossRef]
- Dobrucka, R. Synthesis of titanium dioxide nanoparticles using echinacea purpurea Herba. Iran. J. Pharm. Res. 2017, 16, 756–762. [Google Scholar] [PubMed]
- Fierascu, I.C.; Fierascu, I.; Baroi, A.M.; Ungureanu, C.; Ortan, A.; Avramescu, S.M.; Somoghi, R.; Fierascu, R.C.; Dinu-Parvu, C.E. Phytosynthesis of biological active silver nanoparticles using Echinacea purpurea L. Extracts. Materials 2022, 15, 7327. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakkani, M.F.; Gouda, G.A.; Hassan, S.; Nagiub, A.M. Echinacea purpurea Mediated Hematite Nanoparticles (α-HNPs) Biofabrication, Characterization, Physicochemical Properties, and its In-vitro Biocompatibility Evaluation. Surf. Interfaces 2021, 24, 101113. [Google Scholar] [CrossRef]
- Pawlaczyk, I.; Czerchawski, L.; Pilecki, W.; Lamer-Zarawska, E.; Gancarz, R. Polyphenolic-polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: Chemical characterization and blood anticoagulant activity. Carbohydr. Polym. 2009, 3, 568–575. [Google Scholar] [CrossRef]
- Joya, M.R.; Barba-Ortega, J.; Raba, A.M. Vibrational Raman modes and particle size analysis of cupric oxide with calcination temperature. Indian J. Pure Appl. Phys. 2019, 57, 268–271. [Google Scholar]
Possible Assignments | From | Wavenumber [cm−1] | |
---|---|---|---|
Echinacea | CuO | ||
O-H | Stretching vibration from phenols hydroxyl groups | 3300 | - |
-C-H | Aliphatic stretching vibration | 2926 | - |
2855 | - | ||
C=O | Stretching vibration band of esterified carbonyl groups overlap with carboxylic group | 1730 | - |
C=O+ C=C, ν | C=O conjugated to the aromatic ring | 1598 | |
C=O | Stretching vibrations of carboxylic group | 1414 | 1425 |
S=O | Stretching vibration from sulfate ester | 1330 | - |
C-O | Stretching vibrations | 1246 | - |
S=O | Stretching vibration from sulfate ester | 1151 | - |
C–O | Stretching vibration band | 1022 | 1037 |
Cu-O | CuO | - | 402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, A.; Craciun, G.; Romanitan, C.; Pachiu, C.; Tucureanu, V. Biosynthesis and Characterization of Copper Oxide Nanoparticles. Eng. Proc. 2023, 37, 54. https://doi.org/10.3390/ECP2023-14629
Matei A, Craciun G, Romanitan C, Pachiu C, Tucureanu V. Biosynthesis and Characterization of Copper Oxide Nanoparticles. Engineering Proceedings. 2023; 37(1):54. https://doi.org/10.3390/ECP2023-14629
Chicago/Turabian StyleMatei, Alina, Gabriel Craciun, Cosmin Romanitan, Cristina Pachiu, and Vasilica Tucureanu. 2023. "Biosynthesis and Characterization of Copper Oxide Nanoparticles" Engineering Proceedings 37, no. 1: 54. https://doi.org/10.3390/ECP2023-14629
APA StyleMatei, A., Craciun, G., Romanitan, C., Pachiu, C., & Tucureanu, V. (2023). Biosynthesis and Characterization of Copper Oxide Nanoparticles. Engineering Proceedings, 37(1), 54. https://doi.org/10.3390/ECP2023-14629