Perfluoro(7-methylbicyclo[4.3.0]nonane) Purification from Close-Boiling Impurities by Heteroazeotropic Distillation Method †
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aleshinskii, V.V.; Novikova, M.D.; Shabalin, D.A. Method of Producing Perfluorocycloalkanes. Patent No. RU 2451006 C1, 20 May 2012. [Google Scholar]
- Gervits, L.L.; Snegirov, V.F.; Makarov, K.N.; Galakhov, M.V.; Mukhin, V.Y. Non-Chair Conformation of Cis Isomers of 1,4-Disubstituted Perfluorocyclohexanes. Bull. Acad. Sci. USSR Div. Chem. Sci. 1987, 36, 2664–2665. [Google Scholar] [CrossRef]
- Gervits, L.L. Perfluorocarbon-Based Blood Substitutes Russian Experience. Fluor. Med. 21st Century 1994, 22, 18–21. [Google Scholar]
- Kambur, P.S.; Pashkevich, D.S.; Alekseev, Y.I.; Yampolskii, Y.P.; Alentev, A.Y. Interaction of Perfluorinated Fluids with Fluorine in Gas-Liquid Reactor. Russ. J. Appl. Chem. 2019, 92, 661–666. [Google Scholar] [CrossRef]
- Moshnyaga, A.V.; Khoroshilov, A.V.; Selivanova, D.I.; Aksenova, D.M. Thermodynamics of Dissolved Nitrogen, Nitrous Oxide, and Ammonia in Perfluorodecalin. Russ. J. Phys. Chem. A 2017, 91, 2117–2120. [Google Scholar] [CrossRef]
- Moshnyaga, A.V.; Khoroshilov, A.V.; Semyashkin, M.P.; Mel’nikov, V.V. Density of N2O Solutions in Perfluorodecalin As a Function of Concentration. Russ. J. Phys. Chem. A 2018, 92, 719–723. [Google Scholar] [CrossRef]
- Hassanalizadeh, R.; Nelson, W.M.; Naidoo, P.; Ramjugernath, D. Measurement and Modeling of the Solubility of Tetrafluoromethane in Either Perfluoroheptane or Perfluorodecalin. J. Chem. Eng. Data 2020, 65, 4862–4868. [Google Scholar] [CrossRef]
- Deepika, D.; Pandey, S. Density and Dynamic Viscosity of Perfluorodecalin-Added n-Hexane Mixtures: Deciphering the Role of Fluorous Liquids. Liquids 2023, 3, 48–56. [Google Scholar] [CrossRef]
- Polkovnichenko, A.V.; Lupachev, E.V.; Kisel’, A.V.; Kvashnin, S.Ya.; Kulov, N.N. Perfluoro(7-Methylbicyclo[4.3.0]Nonane) and Perfluoro(Butylcyclohexane): Physicochemical, Thermophysical, and Spectral Data. J. Chem. Eng. Data 2023, 68, 499–517. [Google Scholar] [CrossRef]
- Hynes, A.M.; Shenton, M.J.; Badyal, J.P.S. Plasma Polymerization of Trifluoromethyl-Substituted Perfluorocyclohexane Monomers. Macromolecules 1996, 29, 18–21. [Google Scholar] [CrossRef]
- Wells, A.W.; Diehl, J.R.; Bromhal, G.; Strazisar, B.R.; Wilson, T.H.; White, C.M. The Use of Tracers to Assess Leakage from the Sequestration of CO2 in a Depleted Oil Reservoir, New Mexico, USA. Appl. Geochem. 2007, 22, 996–1016. [Google Scholar] [CrossRef]
- Tuffin, R.; Paari, O.L.; Baker, P.; Brown, C.; Sage, I.C. Material Combination. Patent No. EP3334801B1, 14 July 2016. [Google Scholar]
- Dionisio, K.L.; Phillips, K.; Price, P.S.; Grulke, C.M.; Williams, A.; Biryol, D.; Hong, T.; Isaacs, K.K. The Chemical and Products Database, a Resource for Exposure-Relevant Data on Chemicals in Consumer Products. Sci. Data 2018, 5, 180125. [Google Scholar] [CrossRef] [PubMed]
- Kulov, N.N.; Polkovnichenko, A.V.; Lupachev, E.V.; Rastunova, I.L.; Magomedbekov, E.P. Fractionation of D/H and 18O/16O Water Isotopes in a Packed Distillation Column. Theor. Found. Chem. Eng. 2020, 54, 389–396. [Google Scholar] [CrossRef]
P = 99.0 ± 3 kPa | Fraction | Components Content Xi, Mass % (u(X) = 0.05 Mass %) | Sampling Ratio, Mass Fraction | |||
Identified | Not Identified | |||||
MBCN | PFD | Main Imp. | ∑ Other Imp. | |||
Experiment No 1. Distillation without additional substances (I) | ||||||
∑D | 96.791 | 1.051 | 1.375 | 0.783 | 0.80 | |
F | 95.359 | 2.493 | 1.305 | 0.843 | - | |
W | 89.557 | 7.720 | 1.114 | 1.609 | 0.20 | |
Experiment No 2. Distillation without additional substances (II) | ||||||
∑D | 97.412 | 0.631 | 1.645 | 0.313 | 0.79 | |
F | 96.925 | 1.058 | 1.659 | 0.358 | - | |
W | 95.066 | 2.690 | 1.712 | 0.532 | 0.21 | |
Experiment No 3. Distillation without additional substances (III) | ||||||
∑D | 97.411 | 1.180 | 1.210 | 0.199 | 0.78 | |
F | 97.512 | 0.990 | 1.311 | 0.187 | - | |
W | 97.516 | 0.555 | 1.739 | 0.190 | 0.22 | |
Experiment No 4. Heteroazeotropic distillation in the presence of DMFA | ||||||
∑D | 97.835 | 0.583 | 1.249 | 0.333 | 0.89 | |
F | 97.410 | 0.894 | 1.505 | 0.191 | - | |
W | 92.616 | 3.353 | 3.306 | 0.725 | 0.11 | |
Experiment No 5. Heteroazeotropic distillation in the presence of Ac (I) | ||||||
∑D | 99.912 | 0 | 0 | 0.088 | 0.87 | |
F | 96.400 | 0.689 | 2.846 | 0.066 | - | |
W | 80.537 | 3.782 | 15.681 | 0 | 0.13 | |
Experiment No 6. Heteroazeotropic distillation in the presence of Ac (II) | ||||||
∑D | 99.835 | 0 | 0 | 0.165 | 0.87 | |
F | 98.379 | 0.399 | 1.207 | 0.016 | - | |
W | 87.344 | 2.167 | 10.489 | 0 | 0.13 |
T | Ac in MBCN | MBCN in Ac | ||||
---|---|---|---|---|---|---|
°C | Mass fr. | Mole fr. | Δ Mole fr. | Mass fr. | Mole fr. | Δ Mole fr. |
26.2 ± 0.1 | 0.0105 | 0.0778 | ±0.0028 | - | - | - |
28.0 ± 0.1 | - | - | - | 0.9659 | 0.9956 | ±0.0002 |
30.0 ± 0.1 | 0.0116 | 0.0852 | ±0.0008 | - | - | - |
35.0 ± 0.1 | 0.0129 | 0.0939 | ±0.0013 | 0.9419 | 0.9923 | ±0.0002 |
40.0 ± 0.1 | 0.0138 | 0.1004 | ±0.0006 | 0.9309 | 0.9908 | ±0.0002 |
45.0 ± 0.1 | 0.0150 | 0.1081 | ±0.0008 | 0.9193 | 0.9891 | ±0.0001 |
50.0 ± 0.1 | 0.0166 | 0.1183 | ±0.0006 | 0.9090 | 0.9876 | ±0.0002 |
P | T | Mass fr. | Mole fr. | |||
---|---|---|---|---|---|---|
kPa | °C | Ac | MBCN | Ac | MBCN | Δ Mole fr. |
99.7 ± 0.3 | 54.2 ± 0.5 | 0.7085 | 0.2915 | 0.9508 | 0.0492 | ±0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polkovnichenko, A.V.; Lupachev, E.V.; Kisel’, A.V.; Kvashnin, S.Y.; Kulov, N.N. Perfluoro(7-methylbicyclo[4.3.0]nonane) Purification from Close-Boiling Impurities by Heteroazeotropic Distillation Method. Eng. Proc. 2023, 37, 72. https://doi.org/10.3390/ECP2023-14621
Polkovnichenko AV, Lupachev EV, Kisel’ AV, Kvashnin SY, Kulov NN. Perfluoro(7-methylbicyclo[4.3.0]nonane) Purification from Close-Boiling Impurities by Heteroazeotropic Distillation Method. Engineering Proceedings. 2023; 37(1):72. https://doi.org/10.3390/ECP2023-14621
Chicago/Turabian StylePolkovnichenko, Andrei V., Egor V. Lupachev, Alexey V. Kisel’, Sergey Ya. Kvashnin, and Nikolai N. Kulov. 2023. "Perfluoro(7-methylbicyclo[4.3.0]nonane) Purification from Close-Boiling Impurities by Heteroazeotropic Distillation Method" Engineering Proceedings 37, no. 1: 72. https://doi.org/10.3390/ECP2023-14621
APA StylePolkovnichenko, A. V., Lupachev, E. V., Kisel’, A. V., Kvashnin, S. Y., & Kulov, N. N. (2023). Perfluoro(7-methylbicyclo[4.3.0]nonane) Purification from Close-Boiling Impurities by Heteroazeotropic Distillation Method. Engineering Proceedings, 37(1), 72. https://doi.org/10.3390/ECP2023-14621