Econometric Modeling of the Impact of the COVID-19 Pandemic on the Volatility of the Financial Markets †
Abstract
:1. Introduction
2. Results and Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodell, J.W. COVID-19 and finance: Agendas for future research. Financ. Res. Lett. 2020, 35, 101512. [Google Scholar] [CrossRef] [PubMed]
- Albulescu, C.T. Coronavirus and financial volatility: 40 days of fasting and fear. Financ. Res. Lett. 2020, 11, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Bakas, D.; Triantafyllou, A. Commodity price volatility and the economic uncertainty of pandemics. Econ. Lett. 2020, 193, 109283. [Google Scholar] [CrossRef]
- Zaremba, A.; Kizys, R.; Aharon, D.Y.; Demir, E. Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Financ. Res. Lett. 2020, 35, 101597. [Google Scholar] [CrossRef]
- Chesney, M.; Reshetar, G.; Karaman, M. The impact of terrorism on financial markets: An empirical study. J. Bank. Financ. 2011, 35, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, T. September 11 and time-varying beta of United States companies. Appl. Financ. Econ. 2005, 15, 1227–1242. [Google Scholar] [CrossRef]
- Corbet, S.; Gurdgiev, C.; Meegan, A. Long-term stock market volatility and the influence of terrorist attacks in Europe. Q. Rev. Econ. Financ. 2018, 68, 118–131. [Google Scholar] [CrossRef]
- Hon, M.T.; Strauss, J.; Yong, S.-K. Contagion in financial markets after September 11: Myth or reality? J. Financ. Res. 2004, 27, 95–114. [Google Scholar] [CrossRef]
- Nikkinen, J.; Vähämaa, S. Terrorism and stock market sentiment. Financ. Rev. 2010, 45, 263–275. [Google Scholar] [CrossRef]
- Albulescu, C.T. COVID-19 and the United States financial markets’ volatility. Financ. Res. Lett. 2021, 38, 101699. [Google Scholar] [CrossRef]
- IMF. World Economic Outlook, April 2020: The Great Lockdown. 2020. Available online: https://www.imf.org/en/Publications/WEO/Issues/2020/04/14/weo-april-2020 (accessed on 1 June 2020).
- Ashraf, B.N. Stock markets’ reaction to COVID-19: Cases or fatalities? Res. Int. Bus. Financ. 2020, 54, 101249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hu, M.; Ji, Q. Financial markets under the global pandemic of COVID-19. Financ. Res. Lett. 2020, 36, 101528. [Google Scholar] [CrossRef] [PubMed]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Dynamic co-movements of stock market returns, implied volatility and policy uncertainty. Econ. Lett. 2013, 120, 87–92. [Google Scholar] [CrossRef]
- Chen, X.; Chiang, T.C. Empirical investigation of changes in policy uncertainty on stock returns—Evidence from China’s market. Res. Int. Bus. Financ. 2020, 53, 101183. [Google Scholar] [CrossRef]
- Hartwell, C.A. The impact of institutional volatility on financial volatility in transition economies. J. Comp. Econ. 2018, 46, 598–615. [Google Scholar] [CrossRef] [Green Version]
- Kalyvas, A.; Papakyriakou, P.; Sakkas, A.; Urquhart, A. What drives Bitcoin’s price crash risk? Econ. Lett. 2019, 191, 108777. [Google Scholar] [CrossRef]
- Li, T.; Ma, F.; Zhang, X.; Zhang, Y. Economic policy uncertainty and the Chinese stock market volatility: Novel evidence. Econ. Model. 2020, 87, 24–33. [Google Scholar] [CrossRef]
- Mei, D.; Zeng, Q.; Zhang, Y.; Hou, W. Does US Economic Policy Uncertainty matter for European stock markets volatility? Phys. A Stat. Mech. Its Appl. 2018, 512, 215–221. [Google Scholar] [CrossRef]
- Onan, M.; Salih, A.; Yasar, B. Impact of macroeconomic announcements on implied volatility slope of SPX options and VIX. Financ. Res. Lett. 2014, 11, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Fang, T.; Yin, L. Understanding stock market volatility: What is the role of U.S. uncertainty? N. Am. J. Econ. Financ. 2019, 48, 582–590. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Jana, R.; Roubaud, D. The policy uncertainty and market volatility puzzle: Evidence from wavelet analysis. Financ. Res. Lett. 2019, 31. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Q.; Wang, Y.; Wei, Y.; Wei, G. Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement? Phys. A Stat. Mech. Its Appl. 2019, 536, 122567. [Google Scholar] [CrossRef]
- Haacker, M. The Impact of HIV/AIDS on Government Finance and Public Services; IMF: Washington, DC, USA, 2004. [Google Scholar]
- Santaeulalia-Llopis, R. Aggregate Effects of AIDS on Development. Washington University in St. Louis Working Paper. 2008. Available online: http://www.eco.uc3m.es/temp/agenda/Santaeulalia_LlopisRaul_jmp1.pdf (accessed on 15 May 2020).
- Yach, D.; Stuckler, D.; Brownell, K.D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 2006, 12, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.E.; Cadarette, D.; Sevilla, J.P. Epidemics and economics: New and resurgent infectious diseases can have far-reaching economic repercussions. Financ. Dev. 2018, 55, 46–49. [Google Scholar]
- Fan, V.Y.; Jamison, D.T.; Summers, L.H. Pandemic risk: How large are the expected losses? Bull. World Health Organ. 2018, 96, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M. The Economics of Epidemics. Georget. J. Int. Aff. 2001, 2, 25–31. [Google Scholar]
- Tam, C.C.; Khan, M.S.; Legido-Quigley, H. Where economics and epidemics collide: Migrant workers and emerging infections. Lancet 2016, 388, 1374–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J. A Markov Model of Switching-Regime ARCH. J. Bus. Econ. Stat. 1994, 12, 309. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Susmel, R. Autoregressive conditional heteroskedasticity and changes in regime. J. Econ. 1994, 64, 307–333. [Google Scholar] [CrossRef]
- Ardia, D. Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Marcucci, J. Forecasting stock market volatility with regime-switching GARCH models. Stud. Nonlinear Dyn. Econ. 2005, 9, 1558–3708. [Google Scholar] [CrossRef]
- Hansen, P.R.; Lunde, A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? J. Appl. Econ. 2005, 20, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Ouchen, A. Is the ESG portfolio less turbulent than a market benchmark portfolio? Risk Manag. 2022, 24, 1–33. [Google Scholar] [CrossRef]
RS&P500 | RSSE | RDAX | RCAC | RFTSE | RNIKKEI 225 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS-nGARCH (Normal Distribution) | MS-sGARCH (Student Distribution) | MS-gedGARCH (GED Distribution) | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | |
0.0397 | 0.0432 | 0.0413 | 0.0000 | 0.0142 | 0.0194 * | 0.0594 * | 0.0559 | 0.0583 | 0.0399 | 0.0300 | 0.0340 | 0.0219 | 0.1495 | 0.0196 | 0.2008 ** | 0.2442 | 0.2685 | |
0.2507 ** | 0.2244 | 0.2421 * | 0.0000 | 0.0003 | 0.0001 | 0.1674 ** | 0.1194 | 0.1380 | 0.2722 * | 0.1586 | 0.2093 | 0.0266 | 0.0001 | 0.0198 | 0.0000 *** | 0.0001 | 0.0001 | |
0.0397 | 0.0432 | 0.0413 | 0.0004 | 0.0142 * | 0.0194 | 0.0594 | 0.0559 | 0.0583 | 0.0399 * | 0.0300 | 0.0340 | 2.3633 | 1.1209 | 3.4992 | 0.2008 *** | 0.2442 | 0.2686 | |
0.2507 * | 0.2244 * | 0.2421 | 0.0367 | 0.0003 | 0.0001 | 0.1674 * | 0.11943 | 0.1380 | 0.2722 ** | 0.1586 | 0.2093 | 0.0009 | 0.0032 | 0.0013 | 0.0000 *** | 0.0001 | 0.0001 | |
0.6836 *** | 0.6959 *** | 0.6860 *** | 0.9999 *** | 0.9800 *** | 0.9724 *** | 0.7545 *** | 0.8025 *** | 0.7770 *** | 0.7090 *** | 0.8119 *** | 0.7623 *** | 0.8962 *** | 0.4959 | 0.9139 *** | 0.6985 *** | 0.6582 *** | 0.5945 ** | |
0.6837 *** | 0.8787 *** | 0.6860 *** | 0.9632 *** | 0.9800 *** | 0.9724 *** | 0.7545 *** | 0.8025 *** | 0.7770 *** | 0.7090 *** | 0.8119 *** | 0.7624 *** | 0.0229 | 0.1810 | 0.0920 | 0.6985 *** | 0.6582 *** | 0.5945 * | |
8.4613 * | 1.5233 * | 6.7499 ** | 1.4285 *** | 4.8566 | 1.3430 ** | 3.9446 ** | 1.1658 | 99.7120 *** | 3.7656 *** | 4.6154 *** | 1.3526 *** | |||||||
8.4615 * | 1.5233 * | 6.7499 *** | 1.4285 *** | 4.8564 * | 1.3430 *** | 3.9447 | 1.1659 * | 6.9040 | 19.9959 *** | 4.6154 ** | 1.3525 *** | |||||||
0.9708 *** | 0.9204 *** | 0.9708 *** | 0.4511 *** | 0.0000 | 0.5745 *** | 0.9635 *** | 0.9135 *** | 0.9135 *** | 0.9174 *** | 0.9481 *** | 0.9174 *** | 0.9675 *** | 0.9687 *** | 0.9623 *** | 0.5000 *** | 0.5936 *** | 0.5000 ** | |
0.0796 *** | 0.0292 | 0.0796 ** | 1.0000 | 0.4255 *** | 1.0000 *** | 0.0865 *** | 0.0365 | 0.0365 | 0.0519 ** | 0.0826 | 0.0519 | 0.3088 ** | 0.1067 *** | 0.6949 *** | 0.4064 *** | 0.5000 *** | 0.4064 * | |
Log(L) | −133.3526 | −131.4676 | −131.982 | −145.6943 | −149.1706 | −149.2006 | −153.8733 | −149.0492 | −150.3224 | −151.7521 | −142.9516 | −144.7371 | −131.3101 | −132.3429 | −128.8778 | −147.0999 | −144.4282 | −144.4264 |
BIC | 305.3954 | 311.2981 | 312.3268 | 329.8209 | 346.3814 | 346.4414 | 346.5001 | 346.5403 | 349.0866 | 342.3827 | 334.5014 | 338.0724 | 301.4365 | 313.2061 | 306.276 | 332.632 | 336.8965 | 336.893 |
RS&P500 | RSSE | RDAX | RCAC | RFTSE | RNIKKEI 225 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | MS-nGARCH | MS-sGARCH | MS-gedGARCH | |
0.1409 | 0.0878 | 0.1153 | 1.0390 ** | 0.0252 | 1.6457 | 0.2328 ** | 0.0282 | 0.1110 | 0.1191 * | 0.0000 | 0.3499 | 0.1872 | 0.0000 | 0.5019 | 0.2429 | 0.2229 | 4.2051 | |
0.2992 * | 0.2813 | 0.2932 | 0.9999 *** | 0.0708 | 0.9999 *** | 0.1970 ** | 0.1047 | 0.1470 | 0.5735 * | 0.1619 | 0.2245 | 0.2845 | 0.1756 | 0.2298 | 0.1816 ** | 0.1743 | 0.9998 *** | |
0.1409 | 0.0878 | 0.1153 | 1.0390 * | 0.0252 ** | 1.6460 ** | 0.2329 | 0.0282 | 0.1110 | 1.1660 * | 0.0000 | 0.3499 | 0.1874 * | 0.0000 | 0.5019 | 0.2429 | 0.2229 | 4.2051 | |
0.2992 ** | 0.2813 * | 0.2932 | 0.9999 *** | 0.0708 | 0.9999 *** | 0.1970 | 0.1048 | 0.1470 | 0.1796 | 0.1619 | 0.2245 | 0.2852 ** | 0.1757 | 0.2298 * | 0.1816 | 0.1743 | 0.9998 *** | |
0.6498 *** | 0.6764 *** | 0.6601 *** | 0.0000 *** | 0.9143 *** | 0.0000 | 0.7566 *** | 0.8787 *** | 0.8172 *** | 0.3134 *** | 0.8380 *** | 0.7214 *** | 0.6637 *** | 0.8242 *** | 0.7074 *** | 0.7526 *** | 0.7641 *** | 0.0001 | |
0.6498 *** | 0.6764 *** | 0.6601 *** | 0.0000 *** | 0.9143 *** | 0.0000 | 0.7566 *** | 0.8787 *** | 0.8172 *** | 0.7291 *** | 0.8380 *** | 0.7215 *** | 0.6631 *** | 0.8242 *** | 0.7074 *** | 0.7526 *** | 0.7641 *** | 0.0001 | |
11.1271 ** | 1.6108 *** | 3.2933 ** | 0.7000 *** | 4.5435 *** | 1.0829 | 4.8549 *** | 0.7000 *** | 6.6031 *** | 0.7000 *** | 11.3866 | 0.7000 *** | |||||||
11.1273 ** | 1.6108 *** | 3.2936 | 0.7000 *** | 4.5434 | 1.0829 *** | 4.8545 | 0.7000 *** | 6.5993 | 0.7000 *** | 11.3867 | 0.7000 *** | |||||||
0.9747 *** | 0.9747 *** | 0.9820 *** | 0.9624 *** | 0.9624 *** | 0.9013 | 0.9992 *** | 0.9992 *** | 0.9715 *** | 0.9834 *** | 0.9996 | 0.9996 *** | 0.9724 *** | 0.9996 | 0.9724 *** | 0.9813 *** | 0.9596 *** | 0.9596 | |
0.0180 ** | 0.0180 | 0.0253 *** | 0.0987 *** | 0.0987 *** | 0.0376 | 0.0285 *** | 0.0285 *** | 0.0008 | 0.0120 | 0.0276 | 0.0276 *** | 0.0004 | 0.0276 | 0.0004 | 0.0404 *** | 0.0187 | 0.0187 | |
Log(L) | −216.1008 | −214.935 | −215.2672 | −164.8534 | −156.4963 | −161.0797 | −233.2177 | −224.3603 | −225.0192 | −218.9026 | −218.1442 | −227.0016 | −215.6416 | −210.3256 | −220.6903 | −199.1081 | −198.6219 | −206.969 |
BIC | 469.2794 | 476.2174 | 476.8816 | 366.3045 | 358.7397 | 367.9064 | 503.5132 | 495.068 | 496.3858 | 474.9604 | 482.7323 | 500.4472 | 468.3611 | 466.9985 | 487.7279 | 434.8139 | 442.991 | 459.6852 |
RS&P500 | RSSE | RDAX | RCAC | RFTSE | RNIKKEI 225 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS-nEGARCH | MS-sEGARCH | MS- gedEGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | |
−0.0311 | −0.0334 | −0.0326 | −0.1773 | −0.1448 | −0.1549 | −0.0116 *** | −0.0023 *** | −0.0093 | −0.0153 *** | −0.0022 | −0.0114 *** | −1.1020 *** | −0.0620 *** | −0.0654 *** | −0.1106 *** | −0.0637 *** | −0.0813 *** | |
−0.0311 | −0.0334 | −0.0325 | −0.1773 | −0.1448 | −0.1549 *** | −0.0115 *** | −0.0023 *** | −0.0085 | −0.0153 *** | −0.0022 | −0.0114 *** | −0.2666 ** | −0.0606 *** | −0.0737 *** | −0.1101 *** | −0.0637 *** | −0.0813 *** | |
0.2485 *** | 0.2491 *** | 0.2502 *** | −0.3709 *** | −0.3586 ** | −0.3712 * | −0.2009 *** | −0.2288 *** | −0.1436 *** | −0.2602 *** | −0.2275 *** | −0.2284 *** | 0.4673 *** | −0.3216 *** | −0.3363 *** | −0.5506 *** | −0.5615 *** | −0.4395 *** | |
0.2485 *** | 0.2491 *** | 0.2502 *** | −0.3709 *** | −0.3586 * | −0.3712 ** | −0.2009 *** | −0.2288 *** | −0.1438 *** | −0.2602 *** | −0.2275 *** | −0.2284 *** | −1.4492 *** | −0.2780 *** | −0.3501 *** | −0.5509 *** | −0.5615 *** | −0.4395 *** | |
−0.3162 *** | −0.3259 *** | −0.3204 *** | −0.1616** | −0.1374 | −0.1467 | −0.2628 *** | −0.2543 *** | −0.2025 *** | −0.3680 *** | −0.4195 *** | −0.3489 *** | 0.3644 *** | −0.2453 *** | −0.2596 *** | −0.1819 *** | −0.2344 *** | −0.1823 *** | |
−0.3162 *** | −0.3259 *** | −0.3204 *** | −0.1616** | −0.1374 | −0.1467 | −0.2628 *** | −0.2543 *** | −0.2026 *** | −0.3680 *** | −0.4195 *** | −0.3489 *** | −1.2816 *** | −0.2606 *** | −0.3138 *** | −0.1820 *** | −0.2344 *** | −0.1823 *** | |
0.9138 *** | 0.9103 *** | 0.9123 *** | 0.5603 *** | 0.6049 *** | 0.5893 *** | 0.9427 *** | 0.9491 *** | 0.9504 *** | 0.9345 *** | 0.9268 *** | 0.9336 *** | 0.0895 * | 0.9088 *** | 0.9071 *** | 0.7769 *** | 0.8058 *** | 0.8172 *** | |
0.9138 *** | 0.9103 *** | 0.9123 *** | 0.5603 *** | 0.6049 *** | 0.5893 *** | 0.9427 *** | 0.9491 *** | 0.9504 *** | 0.9345 *** | 0.9268 *** | 0.9336 *** | 0.3108 *** | 0.9079 *** | 0.8950 *** | 0.7769 *** | 0.8058 *** | 0.8172 *** | |
24.3579 *** | 1.8826 *** | 7.4575 *** | 1.4773 *** | 4.8542 *** | 0.9504 *** | 4.3069 *** | 1.5106 *** | 6.3084 *** | 1.4212 *** | 5.6409 *** | 1.7891 *** | |||||||
24.3579 *** | 1.8826 *** | 7.4575 *** | 1.4773 *** | 4.8542 *** | 0.9504 *** | 4.3069 *** | 1.5106 *** | 6.3110 *** | 1.3899 *** | 5.6409 *** | 1.7891 *** | |||||||
0.9708 *** | 0.9708 *** | 0.9708 *** | 0.5745 *** | 0.5745 *** | 0.0000 | 0.9635 *** | 0.9635 *** | 0.9135 *** | 0.9481 *** | 0.9174 *** | 0.9481 *** | 0.9148 *** | 0.5002 *** | 0.5014 *** | 0.5000 *** | 0.5936 *** | 0.5000 *** | |
0.0796 *** | 0.0796 *** | 0.0796 *** | 1.0000 *** | 1.0000 *** | 0.4255 *** | 0.0865 *** | 0.0865 *** | 0.0365 *** | 0.0826 *** | 0.0519 *** | 0.0826 *** | 0.3550 *** | 0.5002 *** | 0.5009 *** | 0.4064 *** | 0.5000 *** | 0.4064 *** | |
Log(L) | −123.5262 | −123.4272 | −123.476 | −148.5441 | −146.9717 | −147.1036 | −140.0383 | −139.6108 | −140.959 | −138.0418 | −133.0186 | −132.0914 | −126.9224 | −128.758 | −128.2535 | −131.8982 | −132.0324 | −132.3902 |
BIC | 295.4153 | 304.8897 | 304.9874 | 345.1284 | 351.5917 | 351.8555 | 328.5185 | 337.3519 | 340.0481 | 324.6817 | 324.3549 | 322.5006 | 302.365 | 315.7403 | 314.7314 | 311.8367 | 321.7131 | 322.4287 |
RS&P500 | RSSE | RDAX | RCAC | RFTSE | RNIKKEI 225 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS-nEGARCH | MS-sEGARCH | MS-gedEGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | MS-nEGARCH | MS-sEGARCH | MS-ged-EGARCH | |
−0.0158 *** | −0.0118 * | −0.0151 *** | 0.0257 | 0.0385 | 0.0261 | −0.0006 | −0.0008 | −0.0001 | −0.0167 *** | −0.0139 | −0.0101 *** | −0.0134 *** | −0.0117 *** | −0.0099 *** | 0.0149 *** | 0.0082 *** | 0.0141 *** | |
−0.0157 *** | −0.0116 * | −0.0151 *** | 0.0258 | 0.0385 | 0.0261 | −0.0006 | −0.0008 | −0.0001 | −0.0167 *** | −0.0139 | −0.0101 *** | −0.0134 *** | −0.0117 *** | −0.0099 *** | 0.0151 *** | 0.0084 *** | 0.0142 *** | |
−0.4035 *** | −0.3505 * | −0.3677 *** | 0.0542 | 0.0405 | 0.0464 | −0.1609 *** | −0.1560 *** | −0.1461 *** | −0.2236 *** | −0.2022 *** | −0.2031 *** | −0.1686 *** | −0.1764 *** | −0.2013 *** | −0.1915 *** | −0.1706 *** | −0.2003 *** | |
−0.4035 *** | −0.3505 ** | −0.3677 *** | 0.0542 | 0.0405 | 0.0464 | −0.1609 *** | −0.1560 *** | −0.1461 *** | −0.2236 *** | −0.2022** | −0.2031 *** | −0.1686 *** | −0.1764 *** | −0.2013 *** | −0.1915 *** | −0.1707 *** | −0.2003 *** | |
−0.7525 *** | −0.6938 *** | −0.7034 *** | −0.7902 *** | −0.6965 ** | −0.7399 ** | −0.2850 *** | −0.2914 *** | −0.2875 *** | −0.3796 *** | −0.3974 *** | −0.3351 *** | −0.316 *** | −0.3271 *** | −0.3036 *** | −0.2588 *** | −0.2667 *** | −0.2965 *** | |
−0.7521 *** | −0.6932 *** | −0.7034 *** | −0.7902 *** | −0.6965 | −0.7399 | −0.2850 *** | −0.2914 | −0.2875 *** | −0.3796 *** | −0.3974 *** | −0.3351 *** | −0.316 *** | −0.3271 *** | −0.3036 *** | −0.2587 *** | −0.2665 *** | −0.2965 *** | |
0.9561 *** | 0.9609 *** | 0.9597 *** | 0.7145 *** | 0.7429 *** | 0.7251 *** | 0.9801 *** | 0.9858 *** | 0.9839 *** | 0.9761 *** | 0.9778 *** | 0.9810 *** | 0.9825 *** | 0.9841 *** | 0.9868 *** | 0.9699 *** | 0.9778 *** | 0.9679 *** | |
0.9561 *** | 0.9609 *** | 0.9597 *** | 0.7145 *** | 0.7429 *** | 0.7251 *** | 0.9801 *** | 0.9858 *** | 0.9839 *** | 0.9761 *** | 0.9778 *** | 0.9810 *** | 0.9825 *** | 0.9841 *** | 0.9868 *** | 0.9699 *** | 0.9778 *** | 0.9679 *** | |
55.0694 *** | 2.3187 *** | 5.3726 *** | 1.3823 *** | 5.1847 *** | 1.3514 *** | 6.2915 *** | 1.5078 *** | 7.0457 *** | 1.5115 *** | 29.1137 *** | 1.9323 *** | |||||||
55.0694 *** | 2.3187 *** | 5.3726 *** | 1.3823 *** | 5.1847 *** | 1.3514 *** | 6.2915 *** | 1.5078 *** | 7.0457 *** | 1.5115 *** | 29.1137 *** | 1.9323 *** | |||||||
0.9747 *** | 0.9747 *** | 0.9820 *** | 0.9624 *** | 0.9624 *** | 0.9624 *** | 0.9715 *** | 0.9992 *** | 0.9715 *** | 0.9724 *** | 0.9724 *** | 0.9724 *** | 0.9724 *** | 00.9724 *** | 0.9724 *** | 0.9813 *** | 0.9596 *** | 0.9596 *** | |
0.0180 *** | 0.0180 *** | 0.0253 *** | 0.0987 *** | 0.0987 *** | 0.0987 *** | 0.0008 *** | 0.0285 *** | 0.0008 *** | 0.0004 *** | 0.0004 | 0.0004 *** | 0.0004 *** | 0.0004 *** | 0.0004 *** | 0.0404 *** | 0.0187 *** | 0.0187 *** | |
Log(L) | −201.2783 | −201.4655 | −201.0586 | −151.7309 | −150.2307 | −150.0951 | −216.7804 | −214.6281 | −215.3432 | −209.9184 | −209.109 | −209.8444 | −202.4837 | −201.7522 | −201.9135 | −188.9213 | −188.9126 | −188.6964 |
BIC | 448.9038 | 458.5478 | 457.734 | 349.2089 | 355.3579 | 355.0866 | 479.9082 | 484.8729 | 486.3032 | 466.2807 | 473.9507 | 475.4216 | 451.3147 | 459.1211 | 459.4438 | 423.5896 | 432.7216 | 432.2894 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Std. Dev. | Interquartile Coefficient | |
---|---|---|---|---|---|---|---|---|
S&P | 5.134 | 7.262 | 9.663 | 11.77 | 14.275 | 33.858 | 6.263305 | 0.725758046 |
SSE | 6.156 | 12.171 | 13.616 | 13.218 | 14.766 | 16.375 | 2.089393 | 0.190584606 |
DAX | 3.962 | 8.628 | 12.042 | 12.961 | 17.328 | 25.193 | 5.18288 | 0.72247135 |
CAC | 3.682 | 9.25 | 12.389 | 13.273 | 16.346 | 29.703 | 5.59991 | 0.572766164 |
FTSE | 5.849 | 10.977 | 11.667 | 11.963 | 12.457 | 21.238 | 2.40386 | 0.126853518 |
NIKKEI | 2.672 | 8.664 | 11.171 | 11.195 | 14.086 | 18.974 | 3.578993 | 0.485363889 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Std. Dev. | Interquartile Coefficient | |
---|---|---|---|---|---|---|---|---|
S&P | 4.89529 | 13.23112 | 27.1176 | 42.77574 | 62.66145 | 172.00951 | 39.30484 | 1.822813597 |
SSE | 16.12 | 16.9 | 19.17 | 40.42 | 26.43 | 1569 | 157.4888 | 0.497130934 |
DAX | 13.31 | 19.29 | 37.62 | 40.35 | 52.3 | 103.76 | 23.27155 | 0.877458799 |
CAC | 7.773 | 17.917 | 34.91 | 38.874 | 49.572 | 114.521 | 25.16885 | 0.906760241 |
FTSE | 8.316 | 17.32 | 31.563 | 34.389 | 45.535 | 90.947 | 20.76365 | 0.893926433 |
NIKKEI | 10.06 | 21.05 | 27.23 | 32.47 | 39.47 | 85 | 17.08098 | 0.676459787 |
Transition Probabilities, Unconditional Probabilities and Conditional Anticipated Duration | RS&P500 | RSSE | RDAX | RCAC | RFTSE | RNIKKEI225 |
---|---|---|---|---|---|---|
0.9708 | 0.5745 | 0.9635 | 0.9481 | 0.9148 | 0.5 | |
0.9204 | 0 | 0.9135 | 0.9174 | 0.645 | 0.5936 | |
0.0292 | 0.4255 | 0.0365 | 0.0519 | 0.0852 | 0.5 | |
0.0796 | 1 | 0.0865 | 0.0826 | 0.355 | 0.4064 | |
0.7316 | 0.7015 | 0.7033 | 0.6141 | 0,8065 | 0.4484 | |
0.2684 | 0.2985 | 0.2967 | 0.3859 | 0.1935 | 0.5516 | |
Conditional anticipated duration on the state of crisis = | 12.5628 | 1.0000 | 11.5607 | 12.1065 | 2.8169 | 2.4606 |
Conditional anticipated duration on the state of stability = | 34.2466 | 2.3502 | 27.3973 | 19.2678 | 11.7371 | 2.0000 |
Transition probabilities, Unconditional Probabilities, and Conditional Anticipated Duration | RS&P500 | RSSE | RDAX | RCAC | RFTSE | RNIKKEI225 |
---|---|---|---|---|---|---|
0.9747 | 0.9624 | 0.9992 | 0.9724 | 0.9724 | 0.9813 | |
0.982 | 0.9013 | 0.9715 | 0.9996 | 0.9996 | 0.9596 | |
0.0253 | 0.0376 | 0.0008 | 0.0276 | 0.0276 | 0.0187 | |
0.018 | 0.0987 | 0.0285 | 0.0004 | 0.0004 | 0.0404 | |
0.4157 | 0.7241 | 0.9727 | 0.0143 | 0.0143 | 0.6836 | |
0.5843 | 0.2759 | 0.0273 | 0.9857 | 0.9857 | 0.3164 | |
Conditional anticipated duration on the state of crisis = | 55.5556 | 10.1317 | 35.0877 | 2500.0000 | 2500.0000 | 24.7525 |
Conditional anticipated duration on the state of stability = | 39.5257 | 26.5957 | 1250.0000 | 36.2319 | 36.2319 | 53.4759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouchen, A. Econometric Modeling of the Impact of the COVID-19 Pandemic on the Volatility of the Financial Markets. Eng. Proc. 2023, 39, 14. https://doi.org/10.3390/engproc2023039014
Ouchen A. Econometric Modeling of the Impact of the COVID-19 Pandemic on the Volatility of the Financial Markets. Engineering Proceedings. 2023; 39(1):14. https://doi.org/10.3390/engproc2023039014
Chicago/Turabian StyleOuchen, Abdessamad. 2023. "Econometric Modeling of the Impact of the COVID-19 Pandemic on the Volatility of the Financial Markets" Engineering Proceedings 39, no. 1: 14. https://doi.org/10.3390/engproc2023039014
APA StyleOuchen, A. (2023). Econometric Modeling of the Impact of the COVID-19 Pandemic on the Volatility of the Financial Markets. Engineering Proceedings, 39(1), 14. https://doi.org/10.3390/engproc2023039014