Power System Dynamic Data Generation Based on Monte Carlo Simulations for Machine Learning Applications †
Abstract
:1. Introduction
2. Monte Carlo Method as a Data Generation Technique
3. Materials and Methods
3.1. Short-Term Forecasting of Nodal Loads
3.2. Short-Term Unit Commitment and Short-Term System Topology
3.3. Random Generation of N-1 Contingencies
3.4. General Structure of the Monte Carlo Process
4. Results
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AI | Artificial intelligence |
DVA | Dynamic vulnerability assessment |
EOF | Empirical orthogonal function |
k | Weibull shape parameter |
LLE | Largest Lyapunov exponent |
MC | Monte Carlo |
OPF | Optimal power flow |
Probability distribution function | |
PMU | Phasor measurement unit |
SIME | Single machine equivalent |
SIPS | System integrity protection scheme |
SSS | Small signal stability |
tcl | Fault clearing time |
tr | Recovery time |
tu | Unstable time |
WAMS | Wide area monitoring system |
η | Transient stability margin (η < 0: unstable, η > 0: stable) |
λ | Weibull scale parameter |
μ | Mean or expectation |
σ | Standard deviation |
References
- Dong, Z.; Zhang, P. Emerging Techniques in Power System Analysis; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Rueda, J.L. Evaluación y Mejora de la Estabilidad de Pequeña Señal de Sistemas Eléctricos de Potencia Considerando Incertidumbres. Ph.D. Thesis, Universidad Nacional de San Juan, San Juan, Argentina, 2009. [Google Scholar]
- Cepeda, J. Evaluación de la Vulnerabilidad del Sistema Eléctrico de Potencia en Tiempo Real usando Tecnología de Medición Sincrofasorial. Ph.D. Thesis, Universidad Nacional de San Juan, San Juan, Argentina, 2013. [Google Scholar]
- Rueda-Torres, J.L.; González-Longatt, F.; Cepeda, J. Dynamic Vulnerability Assessment and Intelligent Control: For Sustainable Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Echeverria, D. Evaluación y Mejora de la Estabilidad Transitoria de Sistemas Eléctricos en Tiempo Real Utilizando PMUs. Ph.D. Thesis, Universidad Nacional de San Juan, San Juan, Argentina, 2021. [Google Scholar]
- Vaca, S. Evaluación Predictiva de Estabilidad Transitoria en Tiempo Real Mediante Aprendizaje Automático y la Identificación de Patrones del Máximo Exponente de Lyapunov. Master’s Thesis, Escuela Politecnica Nacional, Quito, Ecuador, 2023. [Google Scholar]
- Kumar, C.S.; Karuppiah, N.; Kumar, B.P.; Shitharth, S.; Dasu, B. Improvement of the Resilience of a Microgrid Using Fragility Modeling and Simulation. J. Electr. Comput. Eng. 2022, 3074298. [Google Scholar]
- Hashish, M.S.; Hasanien, H.M.; Ji, H.; Alkuhayli, A.; Alharbi, M.; Akmaral, T.; Turky, R.A.; Jurado, F.; Badr, A.O. Monte Carlo simulation and a clustering technique for solving the probabilistic optimal power flow problem for hybrid renewable energy systems. Sustainability 2023, 15, 783. [Google Scholar] [CrossRef]
- Alsharif, A.; Tan, C.W.; Ayop, R.; Al Smin, A.; Ahmed, A.A.; Kuwil, F.H.; Khaleel, M.M. Impact of electric Vehicle on residential power distribution considering energy management strategy and stochastic Monte Carlo algorithm. Energies 2023, 16, 1358. [Google Scholar] [CrossRef]
- Hinojosa, V.H. Pronóstico de Demanda de Corto Plazo en Sistemas de Suministro de Energía Eléctrica Utilizando Inteligencia Artificial. Ph.D. Thesis, Universidad Nacional de San Juan, San Juan, Argentina, 2007. [Google Scholar]
- Chen, C.L.; Chen, S.L. Short-term Unit Commitment with Simplified Economic Dispatch. Electr. Power Syst. Res. 1991, 21, 115–120. [Google Scholar] [CrossRef]
- Hedman, K.W.; Oren, S.S.; O’Neill, R.P. A review of transmission switching and network topology optimization. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–7. [Google Scholar]
- Li, W. Risk Assessment of Power Systems: Models, Methods, and Applications; IEEE Press Series on Power Engineering; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Cepeda, J.C.; Colomé, D.G. Benefits of empirical orthogonal functions in pattern recognition applied to vulnerability assessment. In Proceedings of the 2014 IEEE PES Transmission & Distribution Conference and Exposition—Latin America (PES T&D-LA), Medellin, Colombia, 10–13 September 2014; pp. 1–6. [Google Scholar]
- Rosenstein, M.; Collins, J.; Luca, C. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets; NeuroMuscular Research Center and Department of Biomedical Engineering: Boston, UK, 1992. [Google Scholar]
Case | Contingency | SIME Method | |||
---|---|---|---|---|---|
Contingency and Location Resulting from MC | tcl (ms) | Critical Machines | tu/tr (ms) | η | |
Unstable | L/T 2-25, (90%) | 114 | {G8, G9} | 565.7 | −1.91 |
Stable | L/T 13-14, (5%) | 80 | {G2, G3} | 386.7 | 12.2 |
Very unstable | L/T 21-22, (15%) | 200 | {G6, G7} | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cepeda, J. Power System Dynamic Data Generation Based on Monte Carlo Simulations for Machine Learning Applications. Eng. Proc. 2023, 47, 6. https://doi.org/10.3390/engproc2023047006
Cepeda J. Power System Dynamic Data Generation Based on Monte Carlo Simulations for Machine Learning Applications. Engineering Proceedings. 2023; 47(1):6. https://doi.org/10.3390/engproc2023047006
Chicago/Turabian StyleCepeda, Jaime. 2023. "Power System Dynamic Data Generation Based on Monte Carlo Simulations for Machine Learning Applications" Engineering Proceedings 47, no. 1: 6. https://doi.org/10.3390/engproc2023047006
APA StyleCepeda, J. (2023). Power System Dynamic Data Generation Based on Monte Carlo Simulations for Machine Learning Applications. Engineering Proceedings, 47(1), 6. https://doi.org/10.3390/engproc2023047006